ISOLATION OF POLYHYDROXYALKANOATE PRODUCING BACTERIA FROM BRACKISH WATER SURROUNDING BAKAU TINGGI, KEMAMAN

IEZZA IDAFFI BT TAHIR

Y OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAYSIA TERENGGANU

2013

c/11- 41531

1100091326

Pusat Pembelajaran Digital Sultanah Nur Zahirah (UMT) Universit Tata) Edu Tata) Sanu.

1100091326

Isolation of polyhydroxyalkanoate producing bacteria from brackish water surrounding Bakau Tinggi, Kemaman / lezza ldaffi Tahir.

PUSAT PEMBELAJARAN DIGITAL SULTANAH NUR ZAHIRAH UNIVERSITI MALAYSIA TERENGGANU (UMT) 21030 KUALA TERENGGANU

	11000913	25
a ⁰		
	1	
		· · · · · · · · · · · · · · · · · · ·
		1
	· · · · · · · · · · · · · · · · · · ·	
		Lihat Sebelah

Lihat Sebelah

HAK MILIK Pusat Pempelajaran Dicital Sultanah Nur Zanirah

ISOLATION OF POLYHYDROXYALKANOATE PRODUCING BACTERIA FROM BRACKISH WATER SURROUNDING BAKAU TINGGI, KEMAMAN

By

Iezza Idaffi binti Tahir

Research Report Submitted in partial fulfillment of the requirement for the degree of Bachelor of Science (Marine Biology)

Department of Marine Science

Faculty of Maritime Study and Marine Science

UNIVERSITI MALAYSIA TERENGGANU

2013

This project report should be cited as:

1100091325

Idaffi, I. T. 2013. Isolation of polyhydroxyalkanoate producing bacteria from brackish water surrounding Bakau Tinggi, Kemaman. Undergraduate thesis, Bachelor of Science (Marine Biology), Faculty of Maritime Studies and Marine Science, Universiti Malaysia Terengganu, Terengganu. 61p.

No part of this project report may be reproduced by any mechanical, photographic, or electronic process, or in the form of phonographic recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use, without written permission from the author and the supervisor(s) of the project

> FIX.CN FIX.CN

DEPARTMENT OF MARINE SCIENCE FACULTY OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAYSIA TERENGGANU

DECLARATION AND VERIFICATION REPORT

FINAL YEAR RESEARCH PROJECT

It is hereby declared and verified that this research report entitled:

Isolation of polyhydroxyalkanoate producing bacteria from brackish water surrounding Bakau Tinggi, Kemaman by Iezza Idaffi bt Tahir, Matric No. UK22725 have been examined and all errors identified have been corrected. This report is submitted to the Department of Marine Science as partial fulfillment towards obtaining the Degree of Bachelor of Science (Marine Biology), Faculty of Maritime Studies and Marine Science, Universiti Malaysia Terengganu.

Verified by:

Principal Supervisor Name: Dr. Kesaven Bhubalan Official stamp:

•••••

DR. KESAVEN BHUBALAN LECTURER DEPARTMENT OF MARINE SCIENCE FACULTY OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAY SIA TERENGGANU

Date: 12/6/2013

ACKNOWLEDGEMENT

Alhamdulillah, praise to Almighty Allah S.W.T for giving me strength and patience to complete this study as a fulfillment of my degree.

First and foremost, I would like to express my deepest appreciation and sincere gratitude to my supervisor, Dr. Kesaven Bhubalan for your continuous patience, support, motivation, guidance and enthusiasm throughout this study. I could never have imagined having a better supervisor for my final year project. This research and thesis writing would never have been completed without your contribution of knowledge. Should not to forget is Dr. Siti Aishah binti Abdullah, the coordinator and 'mama' of Marine Biology programme's students that giving courage and guidance during the process of finishing my bachelor degree.

My sincere thanks also goes to all the lecturers of Faculty of Maritime Studies and Marine Science, my teammates and my classmates for giving advise, suggestion, ideas and stimulating discussion whenever I can't find my own way. Special appreciation to all the staff and laboratory assistance; Mr Azahari bin Muda, Miss Mardiah Hayati binti Saidin, Mr. Mohd Zan bin Hussain, Mr Anas bin Ahmad and all the staff of Makmal Oseanografi that assists me during the completion of my project.

This thesis was dedicated to the most important person in my life; my parents Mr. Tahir bin Md. Darjab, Mdm. Ramnah bt Jaalam and my aunt Miss Rohana bt Jaalam. I feel blessed by having all of you by my side and your warm love throughout the day in my life. My sisters, Intan Iezzi Idaffi and Nurul Iman Idaffi also my brother Izzat Idaffi who always been beside me, may all of you find the right path of your life and living a happy life here and hereafter.

TABLE OF CONTENTS

			PAGE
ACK	KNOWLI	EDGEMENTS	ii
LIST	F OF TA	BLES	vi
LIST	r of fic	GURES	vii
LIST	r of sy	MBOLS AND ABBREVIATIONS	viii
LIST	F OF AP	PENDIX	Х
ABS	TRACT		xi
ABS	TRAK		xii
CHA	APTER 1	: INTRODUCTION	
1.1	Backg	round of study	1
1.2	Justific	cation of study	5
1.3	Object	ives	5
CHA	APTER 2	: LITERATURE REVIEW	
2.1	Polyhy	droxyalkanoates (PHA)	6
2.2	Types of	of PHA	10
	2.2.1	Poly (3-hydroxybutyrate) [P(3HB)]	11
	2.2.2	Medium chain length PHA (MCL-PHA)	13
2.3	Biodegr	radability of PHA	15
2.4	Applicat	tion of PHA	17
	2.4.1	PHA as packaging material	18
	2.4.2	PHA as biofuels	18
	2.4.3	PHA in biomedical application	19
2.6	Microbi	al Diversity in Mangrove Ecosystem	20

CHAPTER 3: METHODOLOGY

3.1	Sample collection		21
3.2	Media preparation		
	3.2.1	Nutrient Rich (NR) medium and agar preparation	22
	3.2.2	Mineral Salt Medium (MSM) and agar preparation	23
3.3	Isolation of potential PHA producing bacteria		24
	3.3.1	Preliminary identification of PHA producer	25
3.5	Gas chromatography (GC) analysis		27
	3.5.1	Enumeration of PHA content and monomer composition	29
3.6	Prelim	inary identification of PHA producing bacteria	30

CHAPTER 4: RESULTS

4.1	Isolation of bacteria from water sample obtained from	31
	Bakau Tinggi, Kemaman	
4.2	Screening for potential PHA producing bacteria	35
4.3	Biosynthesis of PHA under liquid culture medium	37
4.4	Identification of PHA produced by bacteria strain	39
4.5	Preliminary identification of PHA producing bacteria	42
CHAPTER 5: DISCUSSION 4		
CHAPTER 6: CONCLUSION		51
REFERENCES		
APPENDIX		60
CURRICULUM VITAE		61

LIST OF TABLES

PAGE

Table 2.1Mechanical properties of polymer produced by Alcaligenes			
	sp. A-04 comparing with commercial petrochemical		
	plastics		
Table 3.1	Component needed for preparation of NR medium	19	
Table 3.2	Component needed for preparation of MSM medium 20		
Table 3.3	Component needed for preparation of trace elements 21		
Table 3.4	Gas chromatography profile 20		
Table 4.1	Table 4.1Total strains observed emitting fluorescence light in		
	respective carbon sources		
Table 4.2	List of bacteria colonies that show positive result after Nile	33	
	Red staining		
Table 4.3	Cultivation of bacteria isolates in glucose, fructose cooking	35	
	oil and oleic acid as carbon source		
Table 4.4	Dried-cell weight of bacteria strains in respective carbon	35	
	sources		
Table 4.5	Biosynthesis of PHA by isolates R6(-6)50.1 using glucose	38	
Table 4.6	Identification of PHA producing bacteria using	40	
	morphological characteristics		

LIST OF FIGURES

Figure 2.1	Transmission electron micrograph (TEM) image of PHA	6
	granule (70 wt% P[3HB]) produced by Cupriavidus necator	
	H16 using palm kernel oil as a carbon sources	
Figure 2.2	General structure of PHA	8
Figure 2.3	Chemical structure of P(3HB)	11
Figure 2.4	Biosynthesis pathway of MCL-PHA	13
Figure 4.1	Turbidity of bacteria cultivated in NR medium was change	30
	after 24 hours cultivation.	
Figure 4.2	Turbidity of bacteria cultivated in MSM medium	30
	supplemented with glucose was change after 48 hours	
	cultivation	
Figure 4.3	(A) Bacteria colonies form taken from sample without serial	31
	dilution. (B) Bacteria colonies form taken from sample with	
	dilution factor 10 ⁻⁶ .	
Figure 4.4	Bacterial strain emitting fluorescence light viewed under UV	33
	light	
Figure 4.5	GC chromatogram of PHA production in R6(-6)50.1 bacteria	37
	strain that used glucose as a carbon source	
Figure 4.6	Pink colour stained of bacteria strain viewed under 100X oil	40
	immersion objective lens of compound microscope	

SYMBOLS AND ABBREVIATIONS

SYMBOLS AND

FULL NAME

ABBREVIATIONS

-

%	Percentage
°C	Degree celcius
mL	Mililiter
L	Liter
mg	Miligram
min	Minute
М	Molar
КОН	Potassium hydroxide
HCl	Hydrochloric acid
NR	Nutrient Rich
MSM	Mineral Salt Medium
CaCl ₂	Calcium Chloride
FeCl ₃	Iron (III) Chloride
CuSO ₄ .5H ₂ O	Copper sulphate pentahydrate
CrCl ₃ .6H ₂ O	Chromium chloride hexahydrate
KH ₂ PO ₄	Potassium dihydrogen phosphate
NH ₄ Cl	Ammonium chloride
MgSO ₄ .7H ₂ 0	Hydrated magnesium sulphate
Na ₂ HPO ₄	Disodium hydrogen phosphate

CoCl ₂ .6H ₂ O	Cobalt (II) chloride hexahydrate
NiCl ₂ ·6H ₂ O	Nickel chloride hexahydrate
РНА	Polyhydroxyalkanoate
SCL-PHA	Short-chain-length polyhydroxyalkanoate
MCL-PHA	Medium-chain-length polyhydroxyalkanoate
P(3HB)	Poly (3-hydroxybutyrate)
C12	3-hydroxydodecanoate
C14	3-hydroxytetradecanoate
PHAc	PHA synthase
GC	Gas Chromatography
CME	Caprylic methyl ester

LIST OF APPENDIX

PAGE

APPENDIX AReport of GC chromatogram of strain R6(-6)50.160

к.

ABSTRACT

This study was conducted to evaluate the potential production of polyhydroxyalkanoate (PHA) by bacteria isolated from water sample of mangrove environment in Bakau Tinggi, Kemaman, Terengganu. A total of 134 bacteria colonies isolated and screened using Nile red staining in order to observe the potential PHA producer. A total of 15 colonies when glucose used as a carbon source and 6 colonies when fructose used as a carbon source was observed to emit pink fluorescence when viewed under UV light. This indicates the probable present of PHA granules in those bacteria. There are possibilities where the Nile red staining was only indicates the present of fatty acid in bacteria cell. Shaken-flasks culture with nutrient limitation and addition of excess carbon sources (glucose, fructose, cooking oil, oleic acid) resulting on the growth of bacteria strain in medium supplemented with glucose and fructose. However, no growth observed in medium supplemented with cooking oil and oleic acid. This phenomenon probably occurred due to the different ability of the bacteria to synthesize and utilize the carbon sources supplement for growth or PHA production. The result of gas chromatography indicates the production of MCL-PHA by strain R6(-6)50.1 using glucose as a carbon source. MCL-PHA produced consist a monomer of 3-hydroxydodecanoate (C12) and 3-hydroxytetradecanoate (C14) with a total PHA content of 2.8 wt%. The strain was tested as gram-negative by using Gram staining method. The complete identification of bacteria species by using Polymerase Chain Reaction (PCR) is proposed on the future study.

Pengasingan bakteria penghasil polihidroksialkanoat (PHA) dari air payau sekitar

Bakau Tinggi. Kemaman

ABSTRAK

Kajian ini dijalankan untuk menilai penghasilan polihidroksialkanoat (PHA) oleh bakteria daripada sampel air di kawasan bakau bertempat di Bakau Tinggi, Kemaman, Terengganu. Sejumlah 134 koloni bakteria daripada sampel air diuji menggunakan kaedah palitan Nile red untuk mengesan kehadiran awal PHA di dalam sel bakteria. Hasil kajian menunjukkan bahawa sebanyak 15 koloni dan 6 koloni yang masing-masing dibekalkan glukosa dan fruktosa sebagai sumber karbon memancarkan cahaya pendarfluor merah jambu apabila dilihat di bawah cahaya UV. Pengkulturan bakteria menggunakan goncangan kelalang menggunakan glukosa, fruktosa, minyak masak dan asid oleik menunjukkan pertumbuhan koloni bakteria di dalam media yang menggunakan glukosa dan fruktosa sebagai sumber karbon. Walaubagaimanapun, tiada pertumbuhan dalam media yang menggunakan minyak masak dan asid oleik sebagai sumber karbon. Fenomena ini mungkin berpunca daripada kelainan kebolehan setiap bakteria untuk menggunakan sumber karbon yang dibekalkan sebagai sumber tenaga untuk pertumbuhan ataupun untuk penghasilan PHA. Keputusan analisis gas kromatogram menunjukkan penghasilan MCL-PHA oleh strain R6(-6)50.1 apabila glukosa digunakan sebagai sumber karbon. MCL-PHA yang dihasilkan terdiri daripada monomer 3-hydroxydodecanoate (C12) dan 3-hydroxytetradecanoate (C14) dengan kandungan PHA sebanyak 2.8 wt%. Strain R6(-6)50.1 dikenalpasti sebagai gram-negatif menggunakan kaedah pewamaan Gram. Pengenalpastian spesis bakteria menggunakan kaedah Polymerase Chain Reaction (PCR) adalah diusulkan dalam kajian pada masa depan.