
ISOLATION OF POLYHYDROXYALKANOATE PRODUCING BACTERIA FROM SEDIMENT COLLECTED AT SETIU

MUHAMMAD AMIRRUL RASYID BIN AHMAD

EACULTY OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAYSIA TERENGGANU

2013

1100091330

Pusat Pembelajaran Digital Sultanah Nur Zahlrah (UMA) Universiti Malaysia Terengganu.

1100091330

Isolation of polyhydroxyalkanoate producing bacteria from sediment collected at Setiu / Muhammad Amirrul Rasyid Ahmad

PUSAT PEMBELAJARAN DIGITAL SULTANAH NUR ZAHIRAH UNIVERSITI MALAYSIA TERENGGANU (UMT) 21030 KUALA TERENGGANU

	110	00091	339	
				8
		1		
			_	
1	1 N 1			

Final Research Project Report Declaration and Verification Form

DEPARTMENT OF MARINE SCIENCE FACULTY OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAYSIA TERENGGANU

DECLARATION AND VERIFICATION REPORT FINAL YEAR RESEARCH PROJECT

It is hereby declared and verified that this research report entitled: Isolation of Polyhydroxyalkanoate Producing Bacteria from Sediment Collected at Setiu by Muhammad Amirrul Rasyid Bin Ahmad Matric no. UK22831 have been examined and all errors identified have been corrected. This report is submitted to the Department of Marine Science as partial fulfillment towards obtaining the Degree Bachelor of Science (Marine Biology), Faculty of Maritime Studies and Marine Science, Universiti Malaysia Terengganu.

Verified by:

Principal Supervisor Dr. Kesaven Bhubalan

Official stamp:

Date: 13/6/2013

DR. KESAVEN BHUBALAN LECTURER DEPARTMENT OF MARINE SCIENCE FACULTY OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAYSIA TERENGGANU (UMT) 21030 KUALA TERENGGANU Isolation of Polyhydroxyalkanoate Producing Bacteria from Sediment Collected at

Setiu

By Muhammad Amirrul Rasyid Bin Ahmad

Research Report submitted in partial fulfilment of the requirement for the degree of Bachelor of Science (Marine Biology)

Department of Marine Science

Faculty of Maritime Studies and Marine Science

UNIVERSITI MALAYSIA TERENGGANU

2013

This project should be cited as :

Ahmad, M.A.R. 2013. Isolation of polyhydroxyalkanoate producing bacteria from sediment collected at Setiu. Undergraduate thesis, Bachelor of Science in Marine Biology, Faculty Maritime Studies and Marine Science, Universiti Malaysia Terengganu, Terengganu.55p.

No part of this project report may be reproduced by any mechanical, photographic, or electronic process, or in the form of phonographic recording, nor may it be stored in a retrieved system, transmitted, or otherwise copied for public or private use, without written permission from the author and the supervisor(s) of the project.

Finen

1100091330

ACKNOWLEDGEMENTS

Assalamualaikum and a very good day to everyone. Praise be to Allah because of His Blessings, this project can be successfully complete. Thanks to my beloved parents Mr. Ahmad Samsuddin and Mrs. Sharifah Saim for support and constantly pray for your son.

Thanks to our supervisor Dr. Kesaven Bhubalan that continuously support and monitor along process of this project from the beginning until the end. Dedication to Dr Ahmad Shamsudin Ahmad that introduce us to biotechnology field. Thank you very much dedicated to all lecturer for guidance and knowledge especially our Mother, Dr Siti Aishah. Grateful, Dr Saifullah, Dr Lee Jen Nie and Mr Yong Jaw Chuen along become our coordinator.

To teammates Teh Weng Kern, lezza Idaffi, Sanisah Ayeb, Nurul Atiqah, Putri Asma and Ain Farhana. I am happy along working together with you all. I seek forgivenesss from all of you if any wrong doing from me. Hopefully we can work together again in the future. Other than that, post graduate student especially Azran, Nazrah, and Wani. Thank you for your help and suggestion in laboratory work and report writing. Not forget to our supportive staff and officer from Marine Science Department especially to Mr. Abdul Manaf, Mr. Azahari, Mr. Che Mohamad Zan that always ready to help and teach us to handle laboratory equipment carefully and correctly. Sorry if we forget to follow laboratory regulation. Mistake are process of learning.

All the best to all Marine Biology 13th Generation, be happy with your choice. I'm glad to be in this family.

TABLE OF CONTENTS

	Page
Final research project report declaration and verification form	i
Acknowledgements	iv
Table of contents	V
List of tables	viii
List of figures	ίx
List of abbreviations and symbol	х
List of appendices	xiii
Abstract	xiv
Abstrak	XV
CHAPTER 1: INTRODUCTION	1
1.1 Objective of the study	4
CHAPTER 2: LITERATURE REVIEW	5
2.1 Polyhydroxyalkanaote (PHA)	5
2.2 Type of PHA	8
2.3 Physical properties of PHA	11
2.4 Biosynthesis of PHA	13
2.5 Metabolic biosynthesis pathway of PHA	14
2.6 Biodegradability of PHA in the environment	17

Page

CHA	PTER 3: METHODOLOGY	18
3.1	Preparation of culture media	18
	3.1.1 Sterilization of glassware and medium	18
	3.1.2 Nutrient rich medium	18
	3.1.3 Mineral salt medium	19
	3.1.4 Nile red stain preparation	22
3.2	Sampling of sediment from mangrove ecosystem	22
	3.2.1 Sampling station	22
	3.2.2 Sampling procedure	23
3.3	Isolation of PHA producing bacteria	23
	3.3.1 Bacteria enrichment	23
	3.3.2 Screening for PHA producing bacteria	24
3.4	Morphological differentiation of bacteria colony	25
3.5	Gram staining	26
	3.5.1 Smear preparation	26
	3.5.2 Staining process and observation	26
3.6	Biosynthesis of PHA with different carbon sources	27
	3.6.1 Cell harvesting and drying	27
	3.6.2 Gas chromatography (GC) analysis	28
	3.6.2.1 Methanolysis	28
	3.6.2.2 GC operation	29
	3.6.3 Enumeration of PHA content and monomer	30
	composition	

Page

СНАР	TER 4: RESULTS	32
4.1	Isolation of PHA producing bacteria	32
	4.1.1 Bacteria enrichment	32
	4.1.2 Screening of PHA producer with Nile red	34
4.2	Gram staining	35
4.3	Morphology and characteristic of potential PHA producer	37
4.4	Biosynthesis of PHA with different carbon sources	38
4.5	Gas chromatography analysis	4●
4.6	Enumeration of PHA content and monomer composition	42
СНАР	TER 5: DISCUSSION	43
СНАР	TER 6: CONCLUSION	47
REFE	RENCES	49
APPE	NDICES	53
CURR	ICULUM VITAE	55

List of tables

		Page
Table 2.1	: Comparison between PHA and synthetic polymer,	12
	Polypropylene.	
Table 3.1	: Component needed in preparation of NRM.	19
Table 3.2	: Component needed in preparation of MSM.	20
Table 3.3	: Stock composition of trace element.	20
Table 4.1	: Number of bacterial colony growth on MS agar.	33
Table 4.2	: Bacteria showing pink fluorescence under UV light.	35
Table 4.3	: Morphology of PHA producer.	37
Table 4.4	: Strain that show positive growth in MSM based on	39
	the carbon sources used.	
Table 4.5	: CDW of PHA producer after biosynthesize in MSM	39
	with different carbon sources.	
Table 4.6	: Biosynthesis of PHA by strains A22 10 ⁻⁶ 1 and	42
	A22 10^{-6} 2 with fructose.	

List of figures

		Page
Figure 2.1	: Transmission electron micrograph of thin sections of	6
	recombinant R. eutropha PHB ⁻⁴ cells containing large	
	amounts (90 % of the dry cell weight) of P(3HB-co-5	
	mol% 3HHx). Bar represents 0.5 μm.	
Figure 2.2	: General structure of PHA.	8
Figure 2.3	: Chemical structure of different types of PHA. A) P-3HB B) P(3HB-co-3HV) C) P(3HB-co-4HB) D) P(3-HB-co-3HHx)	10
Figure 2.4	: Metabolic pathway of PHA biosynthesis.	16
Figure 3.1	: A) NRM and B) MSM that used through the research	21
Figure 3.2	: Guide to observation of bacteria morphology.	25
Figure 4.1	: Growth of bacteria on MS agar.	33
Figure 4.2	: Strains exhibiting pink fluorescence under UV light.	35
Figure 4.3	: Stained strain A) A22 10 ⁻⁶ 1 and B) A22 10 ⁻⁶ 2 under 100X magnification of compound microscope.	36
Figure 4.4	: Strains A) A22 10 ⁻⁶ 1 and B) A22 10 ⁻⁶ 2 observed on NR agar.	37
Figure 4.5	: Positive growth strain culture after biosynthesize in MSM with different carbon sources.	38
Figure 4.6	: GC chromatogram on PHA produced by strains A) A22 10 ⁻⁶ 1 and B) A22 10 ⁻⁶ 2.	41

List of abbreviations and symbol

% mol	Mol percent
μ	Micro
C ₁₀	Carbon-1()
C ₁₂	Carbon-12
C ₁₄	Carbon-14
CaCl ₂	Calcium chloride
CDW	Cell dry weight
СМЕ	Caprylic methyl ester
СоА	Coenzyme-A
CoCl ₂ ·6H ₂ O	Cobalt (II) chloride hexahydrate
CrCl ₃ ·6H ₂ O	Chromium chloride hexahydrate
CuSO ₄ ·5H ₂ O	Copper sulfate pentahydrate
FeCl ₃	Iron (III) chloride
G	Gram
H ₂ O	Water
H_2SO_4	Sulphuric acid
KH ₂ PO ₄	Potassium dihydrogen phosphate
kPa	Kilo pascal
L	Liter
MCL-PHA	Medium chain length PHA
Mg	Milligram

min	Minute
mL	Millilitre
MS Agar	Mineral salt agar
MSM	Mineral salt medium
Na ₂ HPO ₄	Disodium hydrogen phosphate
Na ₂ SO ₄	Sodium sulphate
NH ₄ Cl	Ammonium chloride
NiCl ₂ ·6H ₂ O	Nickel chloride hexahydrate
NMR	Nuclear magnetic resonance
NR Agar	Nutrient rich agar
NRM	Nutrient rich medium
°C	Degree Celcius
P(3HB)	poly(3-hydroxybutyrate)
P(3HB) P(3HB- <i>co</i> -3HHx)	poly(3-hydroxybutyrate) poly(3-hydroxybutyrate- <i>co</i> -3 hydroxyhexanoate)
P(3HB- <i>co</i> -3HHx)	poly(3-hydroxybutyrate-co-3 hydroxyhexanoate)
P(3HB- <i>co</i> -3HHx) P(3-HB- <i>co</i> -3HHx).	poly(3-hydroxybutyrate- <i>co</i> -3 hydroxyhexanoate) poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate)
P(3HB- <i>co</i> -3HHx) P(3-HB- <i>co</i> -3HHx). P(3HB- <i>co</i> -3HV)	poly(3-hydroxybutyrate- <i>co</i> -3 hydroxyhexanoate) poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate) poly(3-hydroxybutyrate- <i>co</i> -3 hydroxyvalerate)
P(3HB- <i>co</i> -3HHx) P(3-HB- <i>co</i> -3HHx). P(3HB- <i>co</i> -3HV) P(3HD)	poly(3-hydroxybutyrate- <i>co</i> -3 hydroxyhexanoate) poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate) poly(3-hydroxybutyrate- <i>co</i> -3 hydroxyvalerate) poly (3-hydroxydecanoate)
P(3HB- <i>co</i> -3HHx) P(3-HB- <i>co</i> -3HHx). P(3HB- <i>co</i> -3HV) P(3HD) P(3HDD)	poly(3-hydroxybutyrate- <i>co</i> -3 hydroxyhexanoate) poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate) poly(3-hydroxybutyrate- <i>co</i> -3 hydroxyvalerate) poly (3-hydroxydecanoate) poly(3-hydroxydodecanoate)
P(3HB- <i>co</i> -3HHx) P(3-HB- <i>co</i> -3HHx). P(3HB- <i>co</i> -3HV) P(3HD) P(3HDD) P(3HHp)	poly(3-hydroxybutyrate- <i>co</i> -3 hydroxyhexanoate) poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate) poly(3-hydroxybutyrate- <i>co</i> -3 hydroxyvalerate) poly (3-hydroxydecanoate) poly(3-hydroxydodecanoate) poly (3-hydroxyheptanoate)
P(3HB- <i>co</i> -3HHx) P(3-HB- <i>co</i> -3HHx). P(3HB- <i>co</i> -3HV) P(3HD) P(3HDD) P(3HHp) P(3HHx)	poly(3-hydroxybutyrate- <i>co</i> -3 hydroxyhexanoate) poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate) poly(3-hydroxybutyrate- <i>co</i> -3 hydroxyvalerate) poly (3-hydroxydecanoate) poly(3-hydroxydodecanoate) poly (3-hydroxyheptanoate) poly (3-hydroxyheptanoate)
P(3HB- <i>co</i> -3HHx) P(3-HB- <i>co</i> -3HHx). P(3HB- <i>co</i> -3HV) P(3HD) P(3HDD) P(3HHp) P(3HHx) P(3HHx- <i>co</i> -3HO)	poly(3-hydroxybutyrate- <i>co</i> -3 hydroxyhexanoate) poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate) poly(3-hydroxybutyrate- <i>co</i> -3 hydroxyvalerate) poly (3-hydroxydecanoate) poly(3-hydroxydodecanoate) poly (3-hydroxyheptanoate) poly (3-hydroxyhexanoate) poly (3-hydroxyhexanoate- <i>co</i> -3-hydroxyoctanoate)

PCR		Polymerase Chain Reaction
rpm		Revolution per minute
SCL-PHA		Short chain length PHA
TCA		Tricarboxylic acid
wt %		Percentage per weight
В	Ξ.	Beta

List of appendices

Appendix I	Report of gas chromatography of strain A22 10)-6 1.
Appendix II	Report of gas chromatography of strain A22 10) ⁻⁶ 2.

ABSTRACT

Gram negative strains, A 22 10⁻⁶ 1 and A 22 10⁻⁶ 2 were isolated from sediment collected at Setiu. Both mangrove strains potential are polyhydroxyalkanoate (PHA) producer after shown positive results in screening for PHA production with Nile red stain when emitted pink fluorescence under UV light. Biosynthesis of PHA by both strains were carried out with glucose, fructose and oleic acid as carbon sources. GC analysis on dried sample of both strains from biosynthesis enriched with glucose and fructose detected production of medium chain length PHA. Strain A22 10⁻⁶ 1 detected in production of C₁₀, poly(3-hydroxydecanoate) P(3HD), C_{12} , poly(3-hydroxydodecanoate) P(3HDD) and C_{14} , poly(3-hydroxytetradecanoate) P(3HTD) while A 22 10⁻⁶ 2 detected for production of P(3HD) and P(3HTD).

ABSTRAK

Pengasingan bakteria yang menghasilkan polihidroksialkanoat daripada sedimen yang dikumpulkan di Setiu

Strain Gram negatif, A 22 10⁻⁶ 1 and A 22 10⁻⁶ 2 telah diasingkan dari sedimen di persekitaran bakau yang dikumpulkan dari Setiu. Kedua-dua strain adalah berpotensi menghasilkan polihidroksialkanoat (PHA) selepas menujukkan keputusan positif dalam saringan terdadap penghasilan PHA dengan pewarnaan 'Nile red' memancarkan florescen merah jambu di bawah cahaya ultra ungu. Biosintesis PHA oleh kedua-dua strain dilakukan dengan menggunakan glukosa fruktosa dan asid olik sebagai sumber karbon. Analisis gas kromatografi ke atas sampel kering kedua dua strain daripada biosintesis yang diperkaya dengan glukosa dan fruktosa mengesan penghasilan PHA rantaian sederhana panjang. Strain A 22 10⁻⁶ 1 dikesan dalam penghasilan C_{10} , poly(3-hydroxydecanoate) P(3HD), C₁₂, poly(3hydroxydodecanoate) P(3HDD) and C_{14} , poly(3-hydroxytetradecanoate) P(3HTD) manakala A 22 10^{-6} 2 dikesan dalam penghasilan P(3HD) and P(3HTD).