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ABSTRACT 

In this paper, we present a general analysis of the three-body Coulomb potential 
polynomials. We show why the three-body Coulomb wave functions expansion in a 
non-orthogonal Laguerre-type function basis gives two modified Pollaczek 

polynomials. The frozen-core model is used to examine the three-body Coulomb 
Hamiltonian. The resulting three-term recurrence relation is a special case of the 
Pollaczek polynomials which is a set of orthogonal polynomials having a nonempty 
continuous spectrum in addition to an infinite discrete spectrum. The completeness of 
the three-body Coulomb wave functions is further studied for different Laguerre basis 
size. 
 
Keywords:  three-body Coulomb, non-orthogonal Laguerre, Pollaczek polynomial, 

frozen-core model 

 

INTRODUCTION 

In atomic and nuclear scattering, it is often desirable to use Slater or 

oscillator function as a basis function. Heller and Yamani [1] have presented 

a new method for performing scattering calculations entirely with square-
integrable (L

2
) functions. They developed techniques in which they 

attempted to take full advantage of the analytic properties of a given 

Hamiltonian and also of the L
2
 function basis which was used to describe the 

wave functions. They developed the basic theory using non-orthogonal 

Laguerre-type function basis appropriate for s-wave scattering. 

 
An L

2 
discretization of the radial two-body Coulomb problem has 

been given by Yamani and Reinhardt [2]. They presented the relationship 

between the matrix eigenvalues of the L
2
 operator with a continuous 

spectrum, and the associated Gaussian quadrature was discussed for the 
radial kinetic energy and for the repulsive and attractive Coulomb 

Hamiltonians. It was shown that discretization of the radial kinetic energy in 
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a non-orthogonal Laguerre-type function basis gave an Ultraspherical 

(Gegenbauer) polynomial, while discretization in an oscillator-type basis 
generated a Laguerre polynomial. They showed that non-orthogonal 

Laguerre-type function basis discretization of the Coulomb problem gave a 

Pollaczek polynomial in the repulsive case and a new modified Pollaczek 
polynomial in the attractive case. The Coulomb problem, with an attractive 

potential, is known to have an infinite number of bound states as well as a 

nonempty continuous spectrum. These suggest that the polynomials 

corresponding to the attractive Coulomb potential will be orthogonal with 
respect to a distribution function having an absolutely continuous 

component and infinitely many discontinuities.  

 
Board [3] proved that the equivalent quadrature Fredholm 

determinant and the J-matrix method are essentially equivalent, yielding the 

same result from the same appropriate treatment of the potential and exact 

treatment of kinetic energy operator. It was shown that relating the spacing 
of the pseudostate eigenvalues to the relative normalization of the 

pseudostate and actual continuum matrix elements provided an alternative to 

the Stieltjes imaging method. Board [4] has also applied the basis of Yamani 
and Reinhardt [2] and Gaussian quadrature based Pollaczek polynomials for 

calculating two-photon processes in hydrogen.  

 
A new expansion of the radial two-body Coulomb wave functions in 

an orthogonal Laguerre-type function basis was later presented by 

Stelbovics [5]. It was shown [6, 7] that the orthogonal Laguerre-type 

function basis could be directly applied to the coupled-channels formulation 
of electron-hydrogen and electron-helium scattering. 

 

The purpose of this paper is to present a new expansion of the three-
body Coulomb wave functions in a non-orthogonal Laguerre-type function 

basis. The frozen-core model [6, 7] is used to calculate the three-body 

Coulomb Hamiltonian. It is shown that discretization of the radial kinetic 
energy and the Coulomb problem in the attractive case for the helium 

ground state (1s) give the modified Pollaczek polynomials of Yamani and 

Reinhardt [2], whereas the other discretization of the radial kinetic energy 

and the Coulomb problem in the attractive and electron-electron potential 
case for the helium excitation states give a new modified Pollaczek 

polynomial. 

 
This paper is organized as follows. In section 2, we present the three-

body Coulomb wave functions and non-relativistic Hamiltonian. Non-

orthogonal Laguerre-type function basis discretization of the three-body 

Coulomb potential gives two modified Pollaczek polynomials and the 



The Three-Body Coulomb Potential Polynomials  

 

 Malaysian Journal of Mathematical Sciences 33 

 

frozen-core model is used to examine the three-body Coulomb Hamiltonian 

are given in Section 3. The resulting three-term recurrence relation is shown 
to be a special case of the Pollaczek polynomials which is a set of 

orthogonal polynomials having a nonempty continuous spectrum in addition 

to an infinite discrete spectrum. In section 4, the completeness of the three-
body Coulomb wave functions is then examined by Gaussian quadrature. 

The numerical results are given in Section 5. Finally in Section 6, we draw 

the concluding remarks from this work. 

 
Accordingly, we introduce the fundamentals of orthogonality and the 

analytical study of orthogonal polynomials. A distribution function ( )xα  is 

a fixed non-decreasing function with infinitely many points of increase in 

the finite or infinite interval [a, b], and the ‘moments’, ( )
b

i

a

x d xα∫ , exist and 

are finite for i = 0, 1, 2, ... . A set of polynomials ( ){ }i
P x , where ( )i

P x  is a 

polynomial of precise degree i, is called orthogonal with respect to α  

provided 

 

 ( ) ( ) ( ) 0

b

i j

a

P x P x d xα =∫ ,   i j≠ .   (1) 

 

With an interval [a, b] and weight function, ( )xw , we may associate Eq. (1)  

 

 ( ) ( ) ( ) 0

b

i j

a

w x P x P x dx =∫ ,  i j≠    (2) 

 
which is defined for all the orthogonal polynomials, that is, 

( ) 0

b
n

a

w x x dx <∫  for all n. If ( )xα  is absolutely continuous, (1) reduces to 

(2) with ( )
( )d x

w x
dx

α
= . On the other hand, if ( )xα  is a jump function, that 

is constant except for jumps of the magnitude
i

w at
i

x x= , then (1) reduces to 

sum  

 ( ) ( )
1

0
n i n j n

n

w P x P x
∞

=

=∑ ,  for i j≠                (3) 

(where { }: 1
n

x n ≥  is the set of jump discontinuities of ( )xα ) which is the 

appropriate definition for functions of a discrete variable. A set of 
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orthogonal polynomials ( ){ }: 0
i n

P x n ≥  will satisfy a three-term recurrence 

relation  

 

( ) ( ) ( ) ( )1 2i n i n i i n i i n
P x A x B P x C P x− −= + − ,   i = 1, 2, ... .              (4) 

 

Here Ai, Bi, and Ci are constants, Ai > 0 and Ci > 0, and the positivity 

conditions 

 

1 0
i i i

A A C− > ,     i = 1, 2, ... ,  (5) 

 

are satisfied. For many of the classical polynomials there are analytic 
relations between function and its first and/or second derivatives 

( )
: 0

n

i

x x

dP x
n

dx
=

   
≥  

   

which may be used to generate the derivatives if 

needed. In the absence of such relationships, it is trivial to differentiate the 

recursion any number of times to obtain equations useful for computing 
derivatives. For example, 

 

( )
( )

( ) ( )
( )1 2

1

n n n

i i i

i n i i i i n

x x x x x x

dP x dP x dP x
A x B C A P x

dx dx dx

− −

−

= = =

     
= + − +     

     
, (6) 

 
may be used for the first derivative once the functions are known. Starting 
from a three-term recurrence relation it is possible to determine two linearly 

independent sets of polynomials with initial conditions 

 

( )0 1
n

P x = ,      ( )1 0 0n n
P x A x B= + ,     

( )0
0

nx x

dP x

dx
=

 
= 

 
,  

(7) 

( )1

0

nx x

dP x
A

dx
=

 
= 

 
.                                                                                 

 

The recurrence relation (4) and the positivity condition (5) imply 
orthogonality [8]. 
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The Pollaczek polynomials are defined by three-term recurrence 

relation 
 

( ) ( ) ( ) ( )1 2
; , 2 1 ; , 2 2 0

i i i
iP x a b i a x b P x a b i P

λ λ λλ λ− −−  − + + +  + + − =   

         (8) 

i = 1, 2, … ,  

 

with initial conditions: ( )1
; , 0P x a b

λ
− = and ( )0

; , 1P x a b
λ = . They have the 

generating function  

 

( ) ( )
( )

( )
( )

0

; , 1 1
i i

i i i

i

i

P x a b z ze ze
λ φ θ λ φ θλ θ θ

∞
− + − −−

=

= − −∑ , 1z < , (9) 

 

where cosx θ= , 0 θ π≤ ≤ , and ( )
cos

2sin

a bθ
φ θ

θ

+
= .When a and b real, 

, 1a b λ≥ > − , the Pollaczek polynomials satisfy the orthogonality relation 

in the interval 1 1x− ≤ ≤  

 

( ) ( ) ( )
1

,

1

; , ; , ; ,i j j i jP x a b P x a b w x a b dx
λ λ λ λ δ

+

−

=∫ ,  
( )

( )

2

/ 2 !
i

i

i a i

λ
λ

λ

Γ +
=

+ +
,       (10) 

 

with the weight function [9, 10] 
 

( ) ( ) ( ){ }( ) ( )( )
2 1

21/ 2
22

; , exp 2 1w x a b x i
λ

λλ θ π φ θ λ φ θ
π

−
−

= − − Γ + .         (11) 

 

THE THREE-BODY COULOMB WAVE FUNCTIONS AND 

HAMILTONIAN 

We consider first a system of two electrons in LS coupling. We 

define the orbital functions in radial, 
il

φ , spherical harmonic, ( )ˆ
lm

Y r , and 

spin function, ( )χ σ , for a single-electron as 

 

 ( ) ( ) ( ) ( )
1

ˆ
il lm

x r Y r
r

ϕ φ χ σ= .               (12) 
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Here x is used to denote both the spatial and spin coordinates. The radial part 

of the single-particle functions, can then be written using the non-orthogonal 
Laguerre-type function basis (see Yamani and Reinhardt [2]) 

 

 ( ) ( ) ( )
1 2 1exp( / 2)

l l

il l l i l
r r r L rφ λ λ λ

+ += − ,                   (13) 

where the ( )2 1l

i l
L rλ+

are the associated Laguerre polynomials,
l

λ is the 

interaction parameter and i ranges from 1 to the basis size n. The two-
particle space is written in terms of the product of these orbital for 

coordinates r1 and r2. We may rearrange these products into linear 

combinations which are eigenvalues of the total orbital angular momentum 
and total spin 

 

( ) ( ) ( ) ( ) ( )1 2 1 2

1 2

1
: :

i l i l
x x lms r r l l lm X s

r r α α β βα β α βϕ ϕ π υ φ φ υ= ,            (14) 

the notation α and β are used to denote the first and second electron, where 
 

( ) ( )1 2

,

ˆ ˆ:
l m l m

m m

l l lm l l m m lm Y r Y r
α α β β

α β

α β α β α β= ∑ ,             (15) 

 

and the two-electron spin function is defined by 

 

( ) ( ) ( )1 1
2 2

1 2

1 2

,

1 1

2 2
X s s

α β
α β µ µ

σ σ

υ µ µ υ χ σ χ σ= ∑ .                     (16) 

The three-body Coulomb wave functions in configuration interaction 
form are  

 

( ) ( ) ( ) ( ) ( )1 2 1 2

, 1 2

1
, :

n lms i i l i l

i i

x x C r r l l lm X s
r r α α β β

α β

αβ

π υ π α βφ φ υ
∞

Φ =∑ ,          (17) 

where the configuration interactions are chosen so that the selection rules are 

satisfied for the combination (αβ) and they are correctly anti-symmetrized 

two-electron states of parity ( )1
l lα β+

− and with total orbital angular 

momentum eigenvalues l, m and spin eigenvalues s,υ. Here the 

configuration interaction coefficients 
( )αβ
i

C  satisfy the symmetry property 

( ) ( ) ( )
1

l l l s

i i
C Cα βαβ βα+ − −

= − ,                (18) 

to ensure anti-symmetry of the two-electron system states.  
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The non-relativistic three-body Coulomb Hamiltonian can be written 

as 
 

1 2 12H H H V= + + ,                             (19) 
 

where 
 

21

2
i i i i

i

Z
H K V

r
= + = − ∇ − ,                           (20) 

for i = 1, 2 , is the one-electron Hamiltonian of the He
+
 ion (Z = 2), and 

 

12

1 2

1
V

r r
=

−
,                             (21) 

 

is the electron-electron potential. Atomic units (a.u.) are assumed 

throughout. 
 

 

THE THREE-BODY COULOMB POTENTIAL 

POLYNOMIALS 

We consider first a system of two electrons in LS coupling. Whereas 

the general Hamiltonian formalism in Eq. (19) includes two-electron 

excitation, in practice we have found that it is sufficient to use the frozen-
core model, where one of the electrons is in a fixed orbital (the ground state) 

while the second electron is described by a set of independent L
2
 functions, 

thus permitting it to span the discrete and continuum excitations, in which 
all configurations have one of the electrons occupying the lowest orbital.  

 

In order to get a good description of the ground state (1s) polynomial, 

we must diagonalized the ground state Hamiltonian in ( )1 2,x xΦ  

2

1

1

1
0

2
m i n

Z

r α
εΦ − ∇ − − Φ = ,                            (22) 

where
α

ε i is the energy associated with the 1s state of He
+
 ion. By using the 

recurrence relations, orthogonality relation and differentiation formula of the 

Laguerre polynomial [8, 10], Eq. (22) finally becomes 

 

( ) ( ) ( ) ( )1 1 1

1 22 2 2 2
l l l

i i i

l l

Z Z
i P x i l x P x i l P xα α α

α α α

α α

α α α α α α α α α
λ λ

+ + +

− −

  
= + − + − +  

    
,

                   (23) 

1,2,...iα = .  
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To initialize the recurrence one sets 

 

 ( )1

1 0
l

P xα

α
+

− = ;  ( )1

0 1
l

P xα

α
+ = ,              (24) 

 

where 

( )
( )

( )
( )1 2 1

1

l

i i

i l
P x C x

i
α

α α

α α α
α α

α

+ Γ + +
=

Γ +
,             (25) 

and 

2

2

8

8

l

i

i

l

i

x

α

α

α

α

α

λ
ε

λ
ε

−
=

+

.                 (26) 

 

The energy 
α

ε i which are obtained from (26) are given by 

2 1

8 1

l i

i

i

x

x

α α

α

α

λ
ε

 +
=  

−  
.                (27) 

 

The excitation states polynomial for ( )21, xxΦ  can now be obtained 

by solving the equation 

 

2

2

2 1 2

1 1
0

2
m i n

Z

r r r β
εΦ − ∇ − + − Φ =

−
,                           (28) 

where iβ
ε  is the energy associated with the excitation states of the helium 

atom.  

 

The matrix elements of the electron-electron potential interaction for 
states where the orbital angular momenta of the two non-equivalent 

electrons (different n and l) are coupled  to a specific l and the spins to a 

specific s. The expectation value of the electron-electron potential 

interaction for this state consists of two direct terms for which the ordering 
of the quantum numbers is the same on both sides and two exchange terms 

for which the order is reversed. The electron-electron potential matrix 

elements may then be written as the difference of a direct and an exchange 

matrix element, for an LS configuration ( αl = 0, βll = ), this reduces to the 

simple expression 
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( ) ( )

( ) ( ) ( ) ( )

( )

( )
( ) ( ) ( ) ( )

1 2

1 1 2 2

2

2 1 1 2 1 21

0 0

1

2

1

2 1

lms lms

s l

l

r r

r r r r
r

r
r r r r dr dr

l r

β

β

αβ αβ

υ υ

α α β β

α β α β

β

φ φ φ φ

φ φ φ φ
∞ ∞

<

+

>

Φ Φ =
−

−
+

+ ∫ ∫

           (29) 

 

in which <r stands for the smaller of the two distances 1r  and 2r , >r is 

greater of the two distances 1r  and 2r . This configuration has two LS 

terms: a triplet term with s = 1 ( l3
) and a singlet term with s = 0 ( l1 ). These 

two terms are split by the exchange part of the electron-electron potential 

interaction. Thus, this splitting of the two spin states is a consequence of the 

anti-symmetry of functions. In order to use this formula for a real system, 
made up of indistinguishable particles, we must, of course, use properly anti-

symmetrized functions.  

 
After the same step as the ground states equation and the electron-

electron potential interaction calculation of a two-electron system, Eq. (28) 

can be written as 
 

( )1

1

2 2
2 2 2

l

exc exc i

l l l l

Z Z
i l V x V P xβ

β

β β β β

β β β β
λ λ λ λ

+

−

     
     + − − − + − −

          

 

           (30) 

( ) ( ) ( )βββββ
β

β

β

β
xPixPli

l

i

l

i

1

1

1

22
+

+

+

− =+− , 1,2,...iβ = ,  

 

to initialize the recurrence one sets 
 

 ( )1

1 0
l

P xβ

β

+

− = ;  ( )1

0 1
l

P xβ

β

+
= ,              (31) 

where 

( )
( )

( )
( )1

2 1

1

l

i i

i l
P x C x

i

β

β β

β β β
β β

β

+
Γ + +

=
Γ +

,              (32) 

( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1 1 2 1 21

0 0

1 1 2 2

1
2

2 1

, ,

l s l
l

l

l

exc

r
r r r r dr dr

l r
V

r r r r

β
β

β

β

α

α β α β

β

α α β β

λ
φ φ φ φ

λ

φ φ φ φ

∞ ∞

<
+

>

  −
   + =

∫ ∫
,           (33)  
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and 
2

2

8

8

l

i

i

l

i

x

β

β

β

β

β

λ
ε

λ
ε

−
=

+

.                              (34) 

 

The energy
β

ε i which is obtained from equation (34) is given by 

 
2

1

8 1

l i

i

i

x

x

β β

β

β

λ
ε

 +
=  

−  
.                 (35) 

 
It is clear that the resulting three-term recurrence relation (23) and (30) are a 

special case of recurrence relation (8) satisfied by the Pollaczek 

polynomials. 

 
The three-term recurrence relation (23) and (30) are defined by the 

generality three-term recurrence relation  

 

( ) ( ) ( ) ( ) ( )1 22 1 2 2 0
i i i

iP x i a x a P x i P x
λ λ λλ λ− −−  − + − +  + + − =  ,   

           (36) 
i = 1, 2, … ,  

 

where (the subscript of α and β for (23) and (30) respectively), 
 

 
2

l

Z
a

α

α
λ

= ; 
2 2

exc

l l

Z
a V

β β

β
λ λ

= − − ,              (37) 

and 

1lα αλ = + ; 1lβ βλ = + ,               (38) 

 

are orthogonal polynomials when the positivity condition (5) holds. The 
following sequence of inequalities must be valid 

 

( )( )( )0 2 1 2 2i a i a iλ λ λ< − + − − + − + − , i = 1, 2, ... .            (39) 

 

Case A: λ > 0.  The inequality in (39) with i = 1 is 
 

( )( )( )1 2 1 0a aλ λ λ− − − − > .                                                (40) 
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This inequality will be satisfied if ( ) 0aλ − > . Moreover, the remaining 

inequalities in (39) for i = 2, 3, ... will also be satisfied. On the other hand, 

if ( ) 0aλ − < , then there will be a smallest integer k such that 

( ) 0k aλ+ − > . The kth inequality in (39) will fail, since ( )1 0k aλ+ − − ≤ . 

This shows that if  λ > 0, then the polynomials generated by the recurrence 
relation (36) are orthogonal with respect to a positive measure if and only 

if ( ) 0aλ − > . 

 

Case B: 
1

0
2

λ− < < . Since λ is negative, (40) holds when ( )1aλ − − and 

( )aλ −  have opposite signs. In particular, (40) holds 

when ( ) 0aλ − > and ( )1 0aλ − − < . It follows that ( ) 0aλ − >  and 

( )1 0aλ+ − > . The inequality in (39) for i = 2 is 

 

 ( )( )( )1 2 0a aλ λ λ− + − > .                                                    (41) 

 

This hold because
1

2
λ− < , so ( )2 0λ >  in this case. Moreover, each of the 

terms in (39) will be positive for the remaining inequalities when i =3,4, …. 

When either ( ) 0aλ − <  or ( )1 0aλ − − > , (40) fails. This shows that for 

1
0

2
λ− < <  the polynomials generated by recurrence (36) are orthogonal 

with respect to a positive measure if and only if 1 0.aλ− < − <  

 

Case C: 
1

2
λ < − . In this case ( )2 1 0λ − <  and ( )2 0λ < . The validity of 

(40) would require  ( )1aλ − −  and ( )a−λ  to have opposite signs. Now 

(41) requires ( )a−λ  and ( )1 aλ+ −  to have opposite signs. This is 

impossible. This shows that when 
1

2
λ < −  the recurrence (36) will never 

generate an infinite set of polynomials orthogonal with respect to a positive 

measure. 
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In summary, the positivity condition for (5) holds if and only if  

 

λ > 0 and ( ) 0aλ − >                           (42a) 

or  

1
0

2
λ− < <  and 1 0aλ− < − < .                         (42b) 

 

 

THE COMPLETENESS OF THE THREE-BODY COULOMB 

WAVE FUNCTIONS 

With the aid of the recurrence relations and orthogonality relation of 

Laguerre polynomial and Christoffel-Darboux relation [8] satisfied by the 

Pollaczek polynomial, the normalization configuration interaction constants 
α

αi
C  and 

β

βi
C can be expressed as follows 

( )
( )

( )
1

2

1

2 1

11 l

ni

l l l

ni n ni nl

x xni

i l d
C P x P

i dxx
α α α

α α α αα
α

α α

α αα α

α

λ
−

−

=

 Γ + +     =    Γ +−     

          (43a) 

and 

( )
( )

( )
1

2

1

2 1

11 l

ni

l l l

ni n ni nl

x xni

i l d
C P x P

dxix

β β β

β β β ββ
β

β β

β βββ

β

λ
−

−

=

 Γ + +     =     Γ +−  
 

.          (43b) 

 

The observation that for the Laguerre basis (13) in the three-body 

Coulomb wave functions have L
2 

expansion coefficients proportional to the 

Pollaczek polynomial can be exploited further to show a connection with 
Gaussian quadrature rules. Consider the completeness relation for the true 

eigenfunctions folded between two arbitrary L
2 
wave functions f  and g   

 

0

il il El El

i

f g f g dE f g

∞∞

Φ Φ + Φ Φ =∑ ∫              (44) 

 

and a finite basis representation in the space spanned by the first n basis 

states of  Eq. (13) type 
 

n

ni ni n
i

f g f gΦ Φ =∑ .               (45) 
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Generally f  and g  may be chosen to possess an infinite number of non-

zero Fourier coefficients so 

 

n
f g f g≠ ,                                                                 (46) 

 
but 

n
f g f g→  as n → ∞.               (47) 

 

To derive an equivalent quadrature rule for this convergence we write (44) 

as  

( )( ) ( )( ) ( )( )
2

,

n

ni n ni n nin
i i

f g C f x x g
α β

αβ αβ αβ
= Φ Φ∑ .                     (48) 

 

We see that the implied quadrature rule for a function f(x) is  

( ) ( ) ( )( ) ( )( )
2

1

b n

ni ni

ia

w x f x dx C f x
αβ αβ

=

=∑∫ .              (49) 

 

The interval limit [a, b] comprise any interval which covers the point and 

continuum mapped into x variable. The quadrature rule (49) can be 

identified as a special case of Gaussian quadrature based Pollaczek 
polynomials. This can be seen by noting some standard results that for 

general orthogonal polynomial there exists a Gaussian quadrature formula 

given by Chihara [11]. The associated quadrature weights, 
ni

w , are given by 

 

( ) ( )
( ) ( )( ) ( )( )

2
1

1

2 1 1

2 1
ni l

l l

n ni n ni

n l
w

dn
P x P x

dx

αβ

αβ αβ

π

+

−

Γ + +
=

Γ +
.             (50) 

 

The configuration interaction coefficient 
( )
ni

C
αβ

 in Eq. (43) which are then 

determined using (50) is given by 
 

( )( )
( )

( )

( )( )
( )

2
2 2

1

l
l

ni ni

ni

C w
x

αβ

αβαβ αβ

αβ

λ

π
=

−
.                                        (51) 
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NUMERICAL RESULTS 

We state a number of results that can be obtained by choosing subsets 

of the basis we have truncated the Fourier expansion. This is equivalent to 

imposing the boundary condition that the (n+1)th coefficient is zero, namely 

that 
 

( )1
0

l

n ni
P x

+ = ,   i = 0, 1, ... , n-1              (52) 

 

as the notation implies there are n real roots to the Eqs. (23) and (30).  
 

A good description of the ground state (
iα

ε = -2.00 a.u.), we take 

lα
λ = 4.0 for nα = 1 in (23). The second electron can be in any nl state nβ ≥1, 

we use the set of βn = 5, 10, 15 and 20 with 
β

λl = 0.93 for the S3,1
states to 

obtained an approximation of negative and positive states in (30). All of the 

roots and resulting eigenvalues are presented in Table 1. All excited-state 
energies are described to an accuracy of better than 0.1% and are presented 

in Table 2. We obtained the energy of -2.862345 a.u. for 11 S in the basis size 

5. If is shown by increasing the number of basis size up to 20 we obtained 

the convergence number of -2.870211 a.u. while the experiment measured -

2.903386 a.u.[12, 13]. The discrepancy between the calculated and the 

experiment is 0.988%. In order to increase the convergence for 1
1
S one can 

slightly change lβ
λ and results are presented in Table 3. The values of the 

configuration interaction coefficient 1Cα  and weight 1wα which belong to the 

ground state (1s) are 1.4141959 and –1.62830282×10
4
. The values of 

ni
w

β

β
 

and 
ni

C
β

β
are tabulated in Tables 4 and 5 for singlet and triplet S-states with 

different basis size and lβ
λ = 0.93 respectively. 

 

 

CONCLUDING REMARKS 

As we indicated in the Introduction, the general Pollaczek 

polynomials ( ){ }; ,iP x a b
λ

 are orthogonal with respect to an absolutely 

distribution function if  

 

a b≥ ,  1λ > − .                (53) 
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Note that 

 

( ) ( ) ( ); , 1 ; ,
i

i i
P x a b P x a bλ λ− − = − ,                                       (54) 

 
which easily follows from the generating function (9), indicates that there is 

no loss of generality in considering only one of the cases 0≥b or 0≤b . 

The positivity condition (5) in the case of ( ){ }; ,iP x a b
λ

 is independent of b, 

since b appears neither in 
i

A  nor in
i

C . This means that ( ){ }; ,iP x a b
λ

 are 

orthogonal if and only if (42a) or (42b) holds.  

 

Using the restricted basis for the three-body Coulomb states in which 
one of the electrons is in fixed orbital (1s) while the second electron is 

described by a set of independent L
2
 functions, we are able to produce the 

complete helium atom energies which are agree well with the experimental 
results of references [12, 13] and other calculations of Konovalov and 

McCarthy [14] and Accad et al. [15]. The convergence of the energies is 

shown as the Laguerre basis size increases. For example,  we obtained the 

energy of -2.174905 a.u. for S31 in the basis size 5. If is shown by 

increasing the number of basis size up to 20 we obtained the convergence 

number of -2.174940  a.u. while the experiment measured  -2.175028  

a.u.[12, 13]. 
 

The completeness relation of the three-body Coulomb wave functions 

is calculated in terms of the configuration interaction coefficient via the 
Gaussian quadrature. It is shown that the weights and configuration 

interaction coefficients converge to certain number for different basis size.  
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TABLE 1: The roots and pseudo-states energies (
iα

ε + iβ
ε ) which are produced from non-

orthogonal Laguerre-L2 expansions are shown for the ground states, 
lα

λ = 4.0 for nα = 1, 1,3
S  

excited states, lβ
λ = 0.93 for nβ = 5, 10, 15 and 20. Powers of ten are denoted by the number in 

brackets. 

 

Nβ i ix
β

 1
S  ix

β
 3

S  

 
 
5 

1 
2 
3 
4 
5 

     0.66808090(+1) 
    -0.35185507(+1) 
    -0.16628586(+1) 
    -0.35362914 
     0.68283608 

-2.145 
-2.060 
-2.027 
-1.949 
-1.430 

0.13282618(+1) 
0.41686718(+1) 
-0.50627876(+1) 
-0.15819399(+1) 

   0.38607842 

-2.175 
-2.068 
-2.024 
-2.022 
-1.757 

 
 
 

 
10 

1 
2 
3 

4 
5 
6 
7 
8 
9 
10 

     0.66808089(+1) 
    -0.35195686(+1) 
    -0.18855244(+1) 

    -0.14455480(+1) 
    -0.10519270(+1) 
    -0.57415939 
    -0.77645763(-1) 
     0.37253183 
     0.72269176 
     0.93569806 

-2.145 
-2.060 
-2.033 

-2.020 
-2.003 
-1.971 
-1.908 
-1.765 
-1.333 
1.234 

 0.13250302(+1) 
 0.41686005(+1) 
-0.50659650(+1) 

-0.21120690(+1) 
-0.15184051(+1) 
-0.10145974(+1) 

    -0.42011142 
     0.16170720 
     0.63352830       
     0.92129230 

-2.175 
-2.068 
-2.036 

-2.022 
-2.001 
-1.956 
-1.851 
-1.521 
-1.150 
0.622 

 
 
 
 
 

 
 

15 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 
11 
12 
13 

14 
15 

     0.66808089(+1) 
    -0.35195686(+1) 
    -0.18857648(+1) 
    -0.14816654(+1) 
    -0.12887558(+1) 

    -0.10902887(+1) 
    -0.84176699 
    -0.56057641 
    -0.26506416 
     0.27839887(-1) 
     0.30247889 
     0.54481143 
     0.74294921 

     0.88776305 
     0.97358844 

-2.145 
-2.060 
-2.033 
-2.021 
-2.014 

-2.005 
-1.991 
-1.970 
-1.938 
-1.886 
-1.799 
-1.635 
-1.272 

-0.193 
6.027 

  0.13250260(+1) 
  0.41686005(+1) 
-0.50659650(+1) 
-0.21123202(+1) 
-0.15654176(+1) 

-0.13298493(+1) 
-0.10998427(+1) 

    -0.81221773 
    -0.48953736 
    -0.15626455 
     0.16520870 
     0.45456512 
     0.69410085 

     0.86942456 
     0.97091398 

-2.175 
-2.068 
-2.036 
-2.024 
-2.015 

-2.005 
-1.989 
-1.963 
-1.922 
-1.850 
-1.714 
-1.405 
-0.462 

5.279 
7.258 
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TABLE 1 (continued) : The roots and pseudo-states energies (
iα

ε + iβ
ε ) which are produced 

from non-orthogonal Laguerre-L2 expansions are shown for the ground states, 
lα

λ = 4.0 for 

nα = 1, 1,3
S  excited states, lβ

λ = 0.93 for nβ = 5, 10, 15 and 20. Powers of ten are denoted by 

the number in brackets. 
 

Nβ i ix
β

 1
S  ix

β
 3

S  

 
 
 

 
 
 
 
 
 

20 

1 
2 
3 

4 
5 
6 
7 
8 
9 
10 
11 

12 
13 
14 
15 
16 
17 
18 
19 

20 

     0.66808089(+1) 
    -0.35195686(+1) 
    -0.18857648(+1) 

    -0.14819681(+1) 
    -0.13084548(+1) 
    -0.11979999(+1) 
    -0.10705412(+1) 
    -0.91232049 
    -0.73101700 
    -0.53401026 
    -0.32808692 

    -0.11972151 
     0.84878801(-1) 
     0.27982937 
     0.45966677 
     0.61946674 
     0.75496825 
     0.86269873 
     0.94010779 

     0.98575646 

-2.145 
-2.060 
-2.033 

-2.021 
-2.014 
-2.010 
-2.004 
-1.995 
-1.983 
-1.967 
-1.946 

-1.916 
-1.873 
-1.809 
-1.710 
-1.543 
-1.231 
-0.543 
1.480 

12.975 

 0.13250260(+1) 
 0.41686005(+1) 
-0.50659650(+1) 

-0.21123202(+1) 
-0.15656459(+1) 
-0.13501023(+1) 
-0.12233178(+1) 
-0.10829059(+1) 

    -0.90766420 
    -0.70670226 
    -0.48919027 

    -0.26355659 
-0.37805456(-1) 

     0.18045213 
     0.38408549 
     0.56657397 
     0.72214597 
     0.84592530 
     0.93416906 

     0.98492723 

-2.175 
-2.068 
-2.036 

-2.024 
-2.016 
-2.011 
-2.004 
-1.995 
-1.982 
-1.963 
-1.937 

-1.900 
-1.845 
-1.759 
-1.612 
-1.334 
-0.713 
 1.156 
12.146 

13.250 

 
 

TABLE 2: The ground and excited-states eigenvalues ( i iα β
ε ε+ ) of the non-relativistic 

Hamiltonian of the three-body Coulomb wave functions (in a.u.) are shown as a function of 

number of L2 basis functions nβ = 5, 10, 15 and 20. The observation results by references [12, 

13]. Highly accurate non-relativistic energy levels of the helium atom by Konovalov and 
McCarthy (KM) [14] and by Accad et al. [15]. 

 
      

     nβ  
 

State 

5 10 15 20 Observation KM Accad et al. 

[Present work] [12, 13] [14] [15] 

1
1
S -2.862345 -2.868680 -2.868880 -2.870211 -2.903386 -2.87247 -2.90372 

2
3
S -2.174905 -2.174918 -2.174940 -2.174988 -2.175028 -2.1742 -2.17523 

2
1
S -2.145175 -2.145385 -2.145575 -2.145678 -2.145770 -2.1434 -2.14597 

3
3
S -2.068295 -2.068320 -2.068358 -2.068399 -2.068497 -2.0684 -2.06869 

3
1
S -2.060760 -2.060798 -2.060860 -2.060952 -2.061079 -2.0605 -2.06127 

4
3
S -2.024980 -2.035111 -2.035326 -2.035420 -2.036323   

4
1
S -2.027555 -2.032980 -2.033290 -2.033307 -2.033398   
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TABLE 3: Convergence of the ground states (11
S) eigenvalues ( i iα β

ε ε+ ) for the three-body 

Coulomb wave functions (in a.u.) are shown as a function of number of L2 basis functions     

nβ = 5, 10, 15 and 20 and lβ
λ . 

 
      

         nβ  
 

   lβ
λ  

5 10 15 20 

0.63 -2.537891 -2.538022 -2.538223 -2.538300 

0.73 -2.624580 -2.624789 -2.625024 -2.625432 

0.83 -2.756891 -2.757022 -2.757202 -2.757348 

0.93 -2.862345 -2.868680 -2.868880 -2.870211 

1.03 -2.899875 -2.903346 -2.903356 -2.903366 

1.13 -3.024432 -3.024502 -3.024555 -3.024588 

1.23 -3.103346 -3.103368 -3.103389 -3.103402 

 
 

TABLE 4: The weights of Gaussian quadrature and configuration interaction coefficient are 

shown for lβ
λ = 0.93, lβ = 0 (singlet) and different basis sizes nβ. Powers of ten are denoted 

by the number in brackets. 
 

nβ Iβ βnix  
βniw  ∑

β

β

β

n

i
ni

w  
β

βniC  

1 1 0.73493151(+1) -0.99734808(+1) -0.99734808(+1) 0.68080834 

 
 
5 

1 
2 
3 
4 

5 

0.66808090(+1) 
    -0.35185507(+1) 
    -0.16628586(+1) 
    -0.35362914 

     0.68283608 

   -0.10774258(+2) 
    0.31493798 
    0.14155879 
    0.20171034 

    0.14256958 

 
 

-0.99734808(+1) 

0.74808942 
0.14340948 
0.12524468 
0.20969070 

0.36419709 

 
 
 
 

10 

1 
2 
3 
4 
5 
6 

7 
8 
9 
10 

     0.66808089(+1) 
    -0.35195686(+1) 
    -0.18855244(+1) 
    -0.14455480(+1) 
    -0.10519270(+1) 
    -0.57415939 

    -0.77645763(-1) 
     0.37253183 
     0.72269176 
     0.93569806 

  -0.10772700(+2) 
    0.31248160 
    0.71324684(-1) 
    0.41947328(-1) 
    0.58201515(-1) 
    0.73797063(-1) 

    0.81947100(-1) 
    0.78209674(-1) 
    0.57963768(-1) 
    0.23346650(-1) 

 
 
 

-0.99734808(+1) 
 

       0.74803536 
       0.14283304 
       0.85402873(-1) 
       0.71142478(-1) 
       0.91485259(-1) 
       0.11761430 

       0.14979376 
       0.19177824 
       0.24834868 
       0.32731445 
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TABLE 4 (continued): The weights of Gaussian quadrature and configuration interaction 

coefficient are shown for lβ
λ = 0.93, lβ = 0 (singlet) and different basis sizes nβ. Powers of 

ten are denoted by the number in brackets. 
 

nβ Iβ βnix  
βniw  ∑

β

β

β

n

i
ni

w  
β

βniC  

 
 
 

 
 
 
 

15 

1 
2 
3 

4 
5 
6 
7 
8 
9 
10 
11 

12 
13 
14 
15 

     0.66808089(+1) 
    -0.35195686(+1) 
    -0.18857648(+1) 

    -0.14816654(+1) 
    -0.12887558(+1) 
    -0.10902887(+1) 
    -0.84176699 
    -0.56057641 
    -0.26506416 
     0.27839887(-1) 
     0.30247889 

     0.54481143 
     0.74294921 
     0.88776305 
     0.97358844 

   -0.10772700(+2) 
    0.31248160 
    0.71114521(-1) 

    0.29140499(-1) 
    0.21661697(-1) 
    0.29261407(-1) 
    0.36994743(-1) 
    0.43252889(-1) 
    0.47777777(-1) 
    0.49986514(-1) 
    0.49081183(-1) 

    0.44233034(-1) 
    0.34947410(-1) 
    0.21760215(-1) 
    0.75257880(-2) 

 
 
 

 
 
 

-0.99734808(+1) 

       0.74803535 
       0.14283304 
       0.85273406(-1) 

       0.58862921(-1) 
       0.52845917(-1) 
       0.64270162(-1) 
       0.76987035(-1) 
       0.90433632(-1) 
       0.10556541 
       0.12317497 
       0.14409329 

       0.16933340 
       0.20029170 
       0.23918206 
       0.28996389 

 
 
 
 
 
 
 
 

 
20 

1 
2 
3 
4 
5 
6 
7 
8 

9 
10 
11 
12 
13 
14 
15 
16 

17 
18 
19 
20 

     0.66808089(+1) 
    -0.35195686(+1) 
    -0.18857648(+1) 
    -0.14819681(+1) 
    -0.13084548(+1) 
    -0.11979999(+1) 
    -0.10705412(+1) 
    -0.91232049 

    -0.73101700 
    -0.53401026 
    -0.32808692 
    -0.11972151 
     0.84878801(-1) 
     0.27982937 
     0.45966677 
     0.61946674 

     0.75496825 
     0.86269873 
     0.94010779 
     0.98575646 

   -0.10772700(+2) 
     0.31248160 
     0.71114521(-1) 
     0.28915174(-1) 
     0.15296600(-1) 
     0.14098964(-1) 
     0.18763174(-1) 
     0.23190347(-1) 

     0.27023846(-1) 
     0.30294044(-1) 
     0.32924161(-1) 
     0.34764632(-1) 
     0.35613715(-1) 
     0.35236562(-1) 
     0.33394312(-1) 
     0.29894102(-1) 

     0.24671680(-1) 
     0.17921714(-1) 
     0.10305502(-1) 
     0.33143435(-2) 

 
 
 
 
 
 
 

-0.99734808(+1) 

 
 

       0.74803534 
       0.14283303 
       0.85273406(-1) 
       0.58631329(-1) 
       0.44218265(-1) 
       0.43505554(-1) 
       0.51710191(-1) 
       0.59818871(-1) 

       0.67871562(-1) 
       0.76336005(-1) 
       0.85528142(-1) 
       0.95714721(-1) 
       0.10716038 
       0.12015559 
       0.13504246 
       0.15225143 

       0.17236660 
       0.19625351 
       0.22532756 
       0.26203222 
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TABLE 5: The weights of Gaussian quadrature and configuration interaction coefficient are 

shown for lβ
λ = 0.93, lβ = 0 (triplet) and different basis sizes nβ. Powers of ten are denoted by 

the number in brackets. 
 

nβ Iβ βnix  
βniw  ∑

β

β

β

n

i
ni

w  
β

βniC  

1 1 0.15689909(+1) -0.89376884 -0.89376884 0.68080835 

 
 
5 

1 
2 
3 

4 
5 

0.13282618(+1) 
0.41686718(+1) 
-0.50627876(+1) 

-0.15819399(+1) 
      0.38607842 

     -0.84345818 
-0.68175809(-1) 
0.43604365(-3) 

0.11690549(-2) 
0.16260060(-1) 

 
 

-0.89376884 

    0.87073610 
0.79678560(-1) 
0.46067410(-2) 

0.11558710(-1) 
0.88403520(-1) 

 
 
 
 

10 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

0.13250302(+1) 
0.41686005(+1) 
-0.50659650(+1) 
-0.21120690(+1) 
-0.15184051(+1) 

-0.10145974(+1) 
     -0.42011142 
      0.16170720 
      0.63352830 
      0.92129230 

     -0.85510609 
-0.67731395(-1) 
0.30828950(-3) 
0.31064874(-3) 
0.26082688(-3) 

0.56576811(-3) 
0.13634289(-2) 
0.35159590(-2) 
0.90251728(-2) 
0.13718550(-1) 

 
 
 

-0.89376884 

    0.88107540 
0.79419330(-1) 
0.38725260(-2) 
0.54271910(-2) 
0.55281310(-2) 

0.91031150(-2) 
0.16831390(-1) 
0.35179440(-1) 
0.85245700(-1) 

    0.22678300 

 
 
 
 
 
 

 
15 

1 
2 
3 
4 
5 
6 

7 
8 
9 
10 
11 
12 
13 
14 

15 

0.13250260(+1) 
0.41686005(+1) 
-0.50659650(+1) 
-0.21123202(+1) 
-0.15654176(+1) 
-0.13298493(+1) 

-0.10998427(+1) 
     -0.81221773 
     -0.48953736 
     -0.15626455 
      0.16520870 
      0.45456512 
      0.69410085 
      0.86942456 

      0.97091398 

     -0.85512987 
-0.67731395(-1) 
0.30828950(-3) 
0.28380453(-3) 
0.17210788(-3) 
0.14342999(-3) 

0.23698094(-3) 
0.39983448(-3) 
0.67198745(-3) 
0.11518934(-2) 
0.20196838(-2) 
0.35650010(-2) 
0.60127339(-2) 
0.83331104(-2) 

0.57935694(-2) 

 
 
 
 
 
 

-0.89376884 

    0.88109330 
0.79419330(-1) 
0.38725260(-2) 
0.51871930(-2) 
0.44492450(-2) 
0.42620740(-2) 

0.57706970(-2) 
0.80686310(-2) 
0.11537710(-1) 
0.17145200(-1) 
0.26718840(-1) 
0.43916050(-1) 
0.76157350(-1) 

    0.13722640 

    0.24243530 
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TABLE 5: The weights of Gaussian quadrature and configuration interaction coefficient are 

shown for lβ
λ = 0.93, lβ = 0 (triplet) and different basis sizes nβ. Powers of ten are denoted by 

the number in brackets. 
 

nβ Iβ βnix  
βniw  ∑

β

β

β

n

i
ni

w  
β

βniC  

 
 
 

 
 
 
 
 
 

20 

1 
2 
3 

4 
5 
6 
7 
8 
9 
10 
11 

12 
13 
14 
15 
16 
17 
18 
19 
20 

0.13250260(+1) 
0.41686005(+1) 
-0.50659650(+1) 

-0.21123202(+1) 
-0.15656459(+1) 
-0.13501023(+1) 
-0.12233178(+1) 
-0.10829059(+1) 

     -0.90766420 
     -0.70670226 
     -0.48919027 

     -0.26355659 
-0.37805456(-1) 

      0.18045213 
      0.38408549 
      0.56657397 
      0.72214597 
      0.84592530 
      0.93416906 
      0.98492723 

     -0.85512987 
-0.67731395(-1) 
0.30828950(-3) 

0.28380453(-3) 
0.17115898(-3) 
0.10206099(-3) 
0.97126148(-4) 
0.14709215(-3) 
0.21703996(-3) 
0.31319220(-3) 
0.45165529(-3) 

0.65678171(-3) 
0.96599589(-3) 
0.14353021(-2) 
0.21409900(-2) 
0.31601392(-2) 
0.44773248(-2) 
0.57077487(-2) 
0.56444177(-2) 
0.28123047(-2) 

 
 
 

 
 
 
 

-0.89376884 
 
 

    0.88109330 
0.79419330(-1) 
0.38725260(-2) 

0.51871930(-2) 
0.44367650(-2) 
0.35797390(-2) 
0.35903120(-2) 
0.45648320(-2) 
0.57940710(-2) 
0.73585380(-2) 
0.94600490(-2) 

0.12384490(-1) 
0.16572750(-1) 
0.22732620(-1) 
0.32026690(-1) 
0.46383180(-1) 
0.68955020(-1) 

    0.10455180 
    0.15905950 
    0.23463870 

 


