
Evergreen Software Preservation: The Conceptual
Framework of Anti-Ageing Model

Jamaiah H. Yahaya1, Aziz Deraman2, Zuriani Hayati Abdullah3

1,3 Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi,
Selangor, Malaysia

2 School of Informatics & Applied Mathematics, Universiti Malaysia Terengganu,
Kuala Terengganu, Terengganu, Malaysia

jhy@ukm.edu.my, a.d@umt.edu.my, zha.ukm@gmail.com
Abstract. The symptom of degradation in term of quality is observed as the in-
dicator of ageing phenomenon in software system. In human and living crea-
tors, ageing is an inescapable manifestation for every living creature on earth.
In human being, this phenomenon of delaying the ageing process is normally
known as anti-ageing. We try to understand and learn the process of ageing in
software through understanding the human ageing process. Unlike human age-
ing, software ageing can be delayed by identifying factors that influence the
ageing. Ageing in software is occurring when the software is degraded in term
of its quality, user’s satisfaction and dynamic. Previous studies indicated that
software ageing factors possibly will be classified into some categorization such
as cost, technology, human, functionality and environment. Our past experienc-
es in software quality and certification motivate us to the development of soft-
ware anti-ageing model and its related areas which are the ageing factors and
rejuvenation index. This paper presents the background issues in software age-
ing which includes software quality and certification, and focus further on the
conceptual framework of software anti-ageing model and preliminary formula-
tion of anti-ageing model.

Keywords: software anti-ageing, software ageing, software quality, evergreen
software, software certification

1 Introduction

Software ageing in computer science discipline has been introduced earlier when
researchers investigated the ageing in software system such as in operating system.
Smooth performance degradation has been also called software ageing and is a conse-
quence of the exhaustion of system resources, such as system memory or kernel struc-
tures, the accumulation of round off errors, database deadlocks, and the contention for
a pool of limited software resources. It also refers to accumulation of errors during the
software execution, which are ultimately results in crash or hanging failure [2]. Deg-
radation of software performance is characterized by the software age. Thus, since

� Springer-Verlag Berlin Heidelberg 2015
K.J. Kim (ed.), Information Science and Applications,
Lecture Notes in Electrical Engineering 339, DOI 10.1007/978-3-662-46578-3_10

8

7

99

then, many efforts have been devoted to characterize and mitigate the software ageing
phenomenon, that is, the accumulation of errors occurring in long-running operational
software. As a result, a signi cant body of knowledge has been established and an
international community of researchers in the area of Software Aging and Rejuvena-
tion (SAR) [1]. Former research by Parnas identified two types of software ageing in
application software, which are caused by the results of the changes that have been
made and the failure of the software or software to adapt to dynamic environment [3].

In current fast growing technology demand, software engineers are becoming a
technology savvy in order to cope with the rapid changes in the environment. Failure
to adapt with dynamic changes will results the relevance and vital of software getting
lesser to its environment which is called a phenomenon of getting old and age. The
characteristics of a software which initially must be built with the capability of modi-
fiable and scalable, thus will give flexibility and enable it to stay young and relevant
in their operating environment [7][8][16]. The process of delaying the ageing in soft-
ware is called anti-ageing process or rejuvenation. It can be done by detecting and
classifying the ageing factors that may cause the ageing and implement the reverse
action to convey the anti-ageing process.

This paper starts with the research background in software ageing, software quality
and certification. Later, a discussion on conceptual framework and the initial formula-
tion of anti-ageing model will be deliberated, and concludes with a conclusion.

2 Background Works

Previous studies indicated that the relevance of the software throughout its life span
depended on the quality of the software [19]. So, it is believed that software ageing is
closely related to the quality and certification of the software in the specific operating
environment [16]. In other words, software can be prevented from ageing and stays
young with the assurance of good quality throughout its life cycle. The assurance of
good quality can be achieved through certification process [19]. The following section
discusses issues and state-of-the-art in software quality and certification.

2.1 Software Quality and Certification

The awareness of the software quality has been increased in most industrial sectors
including software sector. Quality by definition is a subjective concept because quali-
ty is in the eyes of the beholder. Different people see quality in different views and
perspectives. One way to view quality is through user’s perspective which to assess
product or services and relates it in customer’s satisfaction level [5]. On the other
hand, software quality in technical perspective can also be measured by three catego-
ries of measurements which are: internal measures, external measures and quality in
use measures [6]. Internal measures is the process of evaluating on static measures of
intermediate product, external measures evaluate on the behavior of the code while
the quality in used evaluates the basic set of quality in used characteristics which may
affect the software in certain operating environment.

900 J.H. Yahaya et al.

For the last forty years, several software quality models have been developed and
among them are the well-known such as McCall model (1977), Boehm model (1978),
FURPS model (1987), ISO9126 (1991), Dromey model (1996), Systematic Quality
model (2003), PQF model (2007), and SQuaRE (2011). These models demonstrate
quality characteristics of a software in term of efficiency, maintainability, usability,
reliability, functionality and portability [7][13]. In recent years, human aspect is a new
element of software quality measurement that has been included in PQF model which
are not introduced in earlier models. Measuring software product quality by reckoning
the human aspect that relates to the user’s perspective and expectations are recognized
and become a challenge today [7][17].

The term certification in general is the process of verifying a property value asso-
ciated with something, and providing a certificate to be used as proof of validity.
Software certification is the extended quality process intended to ensure and guaran-
tee the quality standard of a software based on certain quality benchmark and accord-
ance to the country standard. Results from certification will provide a valuable recog-
nition on the quality of the software organization which can support the buoyancy and
trustworthiness of the organization.

In Korea, there is a certification program which call good software to ensure that
all software products comes in Korean’s industry will be tested and verified according
to good software standard[20]. K-model can be applied to small and medium sized
business or project for measuring the quality values of the underlying processes. Our
research group has developed a certification model based on end product quality ap-
proach named as SCM-prod model and a tool, SoCfeS, support tool for certification
process [7][19]. This model has been tested successfully in the several business envi-
ronments in Malaysia. The results from the case studies reported a significant satisfac-
tion of software’s developer, manager, and stakeholder, who feel more confidence in
using this model for assessing and certifying software product. The certification exer-
cises can be repeated several times during the life cycle of the products and therefore
continuous quality is maintained and will delay the ageing process of software. We
believe the certification exercises are useful to ensure quality and to maintain sustain-
able quality and preserve evergreen of the software operating in the environment.
Evergreen is defined in general as having an enduring and lasting freshness, success,
or popularity. In this scope of research evergreen software can be defined as the en-
during and everlasting freshness, success and popularity of the software in its’ operat-
ing environment.

2.2 Software Ageing and Anti-Ageing Phenomenon

Formerly, software ageing is referred to a phenomenon in long-running software sys-
tem that shows an increasing of failure rate in which the occurrence of a progressive
degradation in software performance and may lead to undesirable hangs and crashes
[4]. The accumulation of software errors and failure to perform as user intended such
as hang or crush also considered as ageing process [8-9]. The characteristics were
described and identified as follows: memory bloating/leaks, shared- memory-pool
latching, unreleased file locks, accumulation of un-terminated threads, file-space

Evergreen Software Preservation: The Conceptual Framework of Anti-Ageing Model 901

fragmentation, data corruption/round off accrual, thread stacks bloating and over-
runs[2][8][10]. Most of these studies focused on the ageing factors of software sys-
tems.

Software ageing can also be understood as similar to biological system of human
being [3][11]. By using two examples such as human ageing and software life cycle,
applications software can be implied, and view as a category of human evolution.
This analogy is appropriate because it creates certain realization about the software.
First, the application software exists inside a given environment. Furthermore, much
like their biological evolution where they progress and adapt to their environment and
later they grow old. Finally, the life cycle is a series of stages which a living thing
passes from the beginning of its life until its death. So similarly in software life cycle,
we can imply that software system and applications eventually die [12] after certain
time in their environment.

However, the causes of software ageing are different from the biological organism
such as humans. The human gets older when the time passes by which can be meas-
ured by number of years. Contrary with the nature and human, software will not sub-
ject to weakness or physical deterioration, thus it will not get old along with time [12].
Based on our initial investigation done in Malaysia we discover that software may
experience ageing as early as approximately two to four years after being used. There-
fore, we cannot determine the age of the software by numbers and years. It can be
claimed that it does not matter how long the application software has been used as
long as the software in the good quality and dynamic with environment changes, the
software will stay young and healthy [16]. Even though in some circumstances, soft-
ware ageing is inevitable but by understanding the factors of software ageing, in some
ways may help to prevent the occurrence of ageing earlier. Those factors will be ex-
plained in more detail the next section.

Anti-ageing is a process to delay, prevent, and retard the ageing process from oc-
curs premature. In human biological ageing and anti-ageing addressed by Klatz [14]
indicates that anti-ageing factors for human are by practicing a healthy lifestyle, such
as avoid eating unhealthy food, avoid drinking alcohol, stop smoking, stay slim, regu-
lar exercises and stress reduction management. Software anti-ageing may include
prevention and rejuvenation actions such as adaptive, corrective, preventive, and per-
fective can be the anti-ageing action for application software.

3 The Conceptual Framework

A conceptual framework refers to “a theoretical structure of assumptions, principles,
and rules that holds together the ideas comprising a broad concept.” The design of this
conceptual framework is based on the scope of software ageing, anti-ageing and soft-
ware quality for application software.

Previous study has revealed that software ageing is closely related to software
product quality. The effective and practical approach for managing ageing of the
software is through software quality and certification process [16]. This was discussed
in section 2.1. Figure 1 shows the conceptual framework of software anti-ageing that

902 J.H. Yahaya et al.

consists of main components: software quality models, software certification models,
ageing factors, and the algorithm and formulas. The underlying theories in software
quality and certifications were carried out to derive the reliable and supportive ageing
factors as shown in Fig.1.

Fig. 1. The conceptual framework of software anti-ageing model

3.1 Software Quality

Software quality is closely related to the occurrence of software ageing. The more
good quality of the software the less of software failure or software ageing will occur.
Software quality can be measured by a number of variable which can be categorized
by external variables and internal variable. The quality attributes of software product
need to be known, recognized and classified to absorb and learn the underlying fac-
tors associated with ageing and anti-ageing.

3.2 Software Certification

Based on our previous works in software quality and certification indicated that certi-
fication practices in the software operating environment is essential to ensure the
software stays young and healthy. Software certification models and attributes are
essential to be investigated and studied to understand the contributing factors and
features of software anti-ageing process and model. This research focuses on applica-
tion software where application software is a program that is designed to perform
specific task for end users. Application software can be used as a business tool that
supports and assists the business process thus, it is crucial to study the phenomenon of

Evergreen Software Preservation: The Conceptual Framework of Anti-Ageing Model 903

software ageing and anti-ageing towards application software. It is different from
previous works where their focuses are on software systems [1][[2][12][15].

3.3 Software Ageing and Factors

Several questions need to be answered such as what are the indicators of the ageing,
how it affects the performances of the software, does it influence the working perfor-
mance of software practitioners, what are the consequences of software ageing to an
organization, software practitioners and the environment, and do software practition-
ers aware of the ageing phenomenon in their operating environment? Also, how to
delay the ageing process of the software?

Systematic literature study on software ageing is carried out to identify factors that
contribute to the ageing process which also may be used to formulate the anti-ageing
factors and model. Aziz et al [18] identifies four main classification of ageing factors:
functional, human, environment and product profile. Each of these factors is broken
down into metrics and measures that can support in term of measuring the ageing
status and values based on quantitative measures.

3.4 Formulation of the Anti-Ageing Model

A survey done in Malaysia with 50 respondents from information technology experts
and practitioners discovered that 64% of them do not know anything about software
ageing or never heard anything about this topic. The study also showed that only 30%
of the respondents have experienced in software ageing related to the software they
used, 20% of them never experienced while 50% were uncertainty. This findings
reveal that the ageing and anti-ageing issues in software domain is still new but shows
a consideration importance to the respondents.

In general mathematical definition, a "relation" is a relationship between sets of in-
formation. In this scope of study software ageing can be established as a set of several
identified factors. Based on our recent findings 18], the ageing factors of the applica-
tion software have been identified and may be formulated, as in:

Software Ageing (SAS) ƒ(human, environment, functional, product) (1)
SAS ƒ (h, e, f, p) (2)
y = k.x (3)
SAS = k.ƒ (h, e, f, p) (4)

The above relations or equations (1) and (2) are derived from the ageing factors where
software ageing score (SAS) can be derived given the values of factor human (h),
environment (e), functional (f) and product (p). Each factors associated with ageing
mentioned above are broken down into measurable metrics which can be assigned and
transformed into numerical values. Thus, we say that given a value of all the factors,
we know the computed value of SAS. In this case, SAS is the ageing score and can be
mapped and transformed into an ageing status of specific software.

The ageing relation (equation 2) is converted to a function (a well-behaved rela-
tion) which means that given a value, we know exactly where to go, given an x we get
only and exactly one y (see equation 3). Thus, The SAS function shown in (4) indi-

904 J.H. Yahaya et al.

cates that there is a constant value of k to normalize the linear equation of ageing
function. The k value is unknown yet at this stage and still under investigation by our
research group. There is a possibility that the k value varies for h, e, f and p. This will
be an interesting investigation to come up with the possible k through an empirical
study.

Therefore, to develop the anti-ageing model, the relationships between ageing fac-
tors are relevant and been explored further. As we understand anti-ageing means the
reverse action or inversion of ageing. Thus, we possibly will formulate the anti-ageing
model and equation as the reverse or inversion function or negation operator of ageing
as shown in (5).

Anti-Ageing-Score (AAS) = k.ƒ (h, e, f, p) (5)
; Where k is the constant to represent the negation operator.

The formulation discussed in this paper is a preliminary discovery and finding of
this research project. Further works need to be carried out in detail to formulate and
normalize the relationships and verify the relevance of the formula as well as the
practicality of the measurements in real environment.

4 Conclusion

The initial works related to software ageing and anti-ageing in application software
have been presented in this paper. The symptom of degradation in term of software
quality is observed as the indicator of ageing factors in application software. The
ageing phenomenon was observed and experienced through series of software certifi-
cation practices carried out by this research group. Recently, we have identified soft-
ware ageing associated factors and they may be considered as the influential factors of
ageing. The classifications of factor are defined as functional, human, environment
and product profile. Further study and exploration are needed to confirm the correla-
tion between factors and formulate the anti-ageing equations and model. The anti-
ageing model proposed in this paper is the preliminary work and it is valuable to pre-
vent ageing and to preserve the software young and evergreen in the environment.

Acknowledgements

This research is funded by the Fundamental Research Grant Scheme, Malaysia Minis-
try of Higher Education.

References

1. Cotroneo, D., Natella, R., Pietrantuono, R. and Russo, S. Software Aging and Rejuvena-
tion: Where We Are and Where We Are Going, 2011 IEEE Third Int. Work. Softw. Aging
Rejuvenation, no. 30, pp. 1–6, Nov (2011)

Evergreen Software Preservation: The Conceptual Framework of Anti-Ageing Model 905

2. Cassidy, K.J., Gross, K.C. and Malekpour, A. Advanced pattern recognition for detection
of complex software aging phenomena in online transaction processing servers, Proc. Int.
Conf. DependableSyst. Networks, pp. 478–482 (2002)

3. Parnas, D.L. Software Aging Invited. IEEE, pp. 279–287 (1994)
4. Zhao, J., Trivedi, K.S., Wang, Y. and Chen, X. Evaluation of software performance affect-

ed by aging. 2010 IEEE Second Int. Work. Softw. Aging Rejuvenation, vol. 3, pp. 1–6,
Nov (2010)

5. Jin, H. and Zeng, F. Research on the definition and model of software testing quality,
Proc. 2011 9th Int. Conf. Reliab. Maintainab. Saf., pp. 639–644, Jun (2011)

6. Suryn, W., Bourque, P., Abran, A. and Laporte, C. Software product quality practices -
quality measurement and evaluation using TL9000 and ISO/IEC 9126. Intermag Eur. 2002
Dig. Tech. Pap.2002 IEEE Int. Magn. Conf., pp. 156–160 (2003)

7. Yahaya, J.H., Deraman, A., Baharom, F. and Hamdan, A.R. Software Certification from
Process and Product Perspectives. IJCSNS International Journal of Computer Science and
Network Security, 9(3), March (2009)

8. Sachin Garg, K. S. T., Aadvan Moorsel, Vaidyanathan, K. .A Methodology for Detection
and Estimation of Software Aging. Software Reliability Engineering, Proceedings. The
Ninth International Symposium (1998)

9. Grottke, M., Li, L., Vaidyanathan, K.. and Trivedi K. S. Analysis of Software Aging in a
Web Server. IEEE Trans. Reliab. 55(3) pp. 411–420, Sept (2006)

10. Zheng, P., Xu, Q. and Qi, Y. An Advanced Methodology for Measuring and Characteriz-
ing Software Aging. 2012 IEEE 23rd Int. Symp. Softw. Reliab. Eng. Work., pp. 253–258,
Nov (2012)

11. Sustainment, S. Geriatric Issues of Aging Software. The Journal of Defense Software En-
gineering. pp 4-7 Dec (2007)

12. Constantinides, C. and Arnaoudova, V. Prolonging the aging of aoftware systems. Ency-
clopedia of Information Science and Technology [Online]. Second Edition (8 Volumes)
(2009)

13. ISO/IEC 25010. Systems and Software Engineering – Systems and Software Quality Re-
quirements and Evaluation (SQuaRE) (2011)

14. Klatz, R. Definition of Anti-Aging Medicine. Academic Journal Article, Generations ,
25(4), Winter (2002)

15. Hanmer, R. Software rejuvenation. Proceedings of the 17th Conference on Pattern Lan-
guages of Programs. ACM (2010)

16. Yahaya, J. H. & Deraman, A. Towards a Study on Software Ageing for Application Soft-
ware: The Influential Factors. IJACT: International Journal of Advancements in Compu-
ting Technology, 4(14), pp. 51-59 (2012)

17. Yahaya, J.H., Deraman, A., Hamdan, A.R and Jusoh, Y.Y. User-Perceived Quality Factors
for Certification Model of Web-Based System. International Journal of Computer, Infor-
mation, Mechatronics, Systems Science and Engineering Vol:8 No:5, pp. 576-582 (2014)

18. Deraman, A., Yahaya, J.H., Zainal Abidin, Z.N. and Mohd Ali, N. Software Ageing Meas-
urement Framework Based on GQM Structure. Journal of Software and Systems Develop-
ment, 2014 (2014):1-12 (2014)

19. Yahaya, J. H., Deraman, A. & Hamdan, A. R. Continuosly Ensuring Quality through
Software Product Certification: A Case Study. Proceedings of the International Confer-
ence on Information Society (i-Society 2010), London, UK, 28-30 June (2010)

20. Hwang, S.M. Quality Metrics for Software Process Certification based on K-model. 2010
IEEE 24th International Conference on Advanced Information Networking and Applica-
tions Workshops, pp 827-830 (2010).

906 J.H. Yahaya et al.

	107 Evergreen Software Preservation: The Conceptual Framework of Anti-Ageing Model
	1 Introduction
	2 Background Works
	2.1 Software Quality and Certification
	2.2 Software Ageing and Anti-Ageing Phenomenon

	3 The Conceptual Framework
	3.1 Software Quality
	3.2 Software Certification
	3.3 Software Ageing and Factors
	3.4 Formulation of the Anti-Ageing Model

	4 Conclusion
	Acknowledgements
	References

