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Abstract We propose a group decision making model based on conflicting bifuzzy
sets (CBFS) where evaluation are bi-valued in accordance to the subjective assessment
obtained from the experts for the positive and negative views. This paper discusses the
weighting methods for particular attribute and subattribute with emphasis given to the
unification of subjective and objective weights. The integration of CBFS in the model
is naturally done by extending the fuzzy evaluation in parallel with the intuitionistic
fuzzy. We introduce a new technique to compute the similarity measure, being the
degree of agreement between the experts. We end up the paper by demonstrating the
applicability of the proposed model to the empirical case of flood control project, one
of the project selection problems.
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1 Introduction

Multi-attribute group decision making (MAGDM) is a famous decision making model
particularly used in solving the problem of choosing the best candidate from a set
of possible alternatives based on evaluation collected from a group of experts. It is
admissible that a complex decision problem requires an integration of various expertise
in which the lack of knowledge or experience of an expert can be offset by others. Due
to its ability in solving the decision making problem with the presence of conflict and
agreement among experts, theMAGDMhas been successfully applied in constructions
(see Cheng and Li 2004), computing and telecommunications technology (see Lee
1996) and energy planning (see Pohekar and Ramachandran 2004).

Evaluation of attribute is naturally vague and ambiguous.Anumericalmeasurement
of it may not provides a precise assessment. Thus, the rating of alternative for certain
attribute can be better represented using a linguistic approach. Many authors have
applied the theory of fuzzy set (FS) introduced by Zadeh (1965) to present attribute in
linguistic variable by the means of fuzzy number. For instance, a study by Chen (2000)
has demonstrated the ability of fuzzy theory to solve the fuzziness in the technique for
order preference by similarity to ideal solution (TOPSIS) procedure. In Tiryaki and
Ahlatcioglu (2005), a ranking systemhas been developedwith the use of fuzzy analytic
hierarchy process (AHP) in the stock selection problem. A recent paper by Langroudi
et al. (2013) used an extended version of fuzzy theory (referred as type-2 fuzzy set) for
TOPSIS method.

Recently, the intuitionistic fuzzy sets (IFS) founded by Atanassov (1986) has play
its role in the multi-attribute decision making processes (see for example the papers
by Liu andWang 2007; Xu and Yager 2008). Ye (2013) has described the weight in the
MAGDMunder intuitionistic fuzzy setting. The intuitionistic fuzzy provides themem-
bership and non-membership functions, implies that there are two-sided evaluation in
IFS. Since the sum of membership and non-membership values must be less or equal
to one in IFS, the data are rather restricted. For example, we may rate the candidate in
an interview as good with membership 0.75 and bad with membership 0.25 which is
complementary as in FS. The sum of good (membership) and bad (non-membership)
may less than one (as in IFS) and may exceed one in some circumstances. We want
to study the problem of the sum of two contradict evaluations exceed one by resorting
to the so-called conflicting bifuzzy sets (CBFS).

Our aim is to propose a conflicting bifuzzy MAGDM model. A concept paper
by Tap (2006) has introduced the conflicting bifuzzy sets and its possible applications,
including the decision making problem. Taib et al. (2008) and Zamali et al. (2010)
have used the bifuzzy concept in rating alternative for certain criteria in analytic
hierarchy process. A study by Xu and Yan (2011) has applied the bifuzzy evaluation
to a vendor selection problem. In this paper, we construct the decision matrix for
certain attributes and subattributes using the conflicting bifuzzy evaluation. There is
no restriction imposed to the evaluation to ensure all data are significant and will be
considered in the decision process. This lead us to a fair and better decision.

However, the lack of knowledge and experience of expert (decision maker) may
effect the decision process.Weweight the expert according to their depth of knowledge
and the period of services. In weighting attribute and subattribute, we follow the works
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done by Liu and Kong (2005) and Wang and Lee (2009) using the integrated fuzzy
subjective and objective weights. The fuzzy AHP approach is used to measure the
subjectiveweight, while the objectiveweight is obtained from the entropymethod. The
entropy method, referring to Shannon’s theory of information (see e.g. Shannon 1949)
is one of the objective methods to determine weight (see Zeleny 1982). The advantage
of this method is the determination of weight does not require a direct involvement of
the decision maker, but a direct function of the information (see Pomerol and Barba-
Romero 2000). Some researchers have applied the entropy method to the real world
problems. Examples of this literature are Li et al. (2014) and Chen et al. (2014). We
integrate the subjective and objective weight using Hurwicz’s criterion which reflects
the subjective judgment of the decision maker and objective information obtained
from the solution of a mathematical model.

We take selection problem of flood control projects as our empirical case. Accord-
ing toMaragoudaki and Tsakiris (2005), most of the previous evaluation and selection
of flood control projects are focused mainly on economic and technical factors. For
example, in technical aspect, selection of flood control projects are based on the rela-
tionship between flood magnitudes (i.e., flood depth, flood velocity, flood flow rate,
etc.), in addition to anticipated flood damage. On the other hand, the cost-benefit
analysis (CBA) approach is usually used in the economic domain (see Morris-Oswald
2001). The CBA focuses on the implementation and maintenance costs of selected
alternative, besides the direct and indirect benefits of total change in income from the
project. However, recent approaches in the selection of flood control project recog-
nize the fact that these types of projects interact with various sectors including social,
politic, economic and environment. Hence, the application of multi-criteria decision
making technique in flood management is clearly significant.

Selection of flood control projects is based on the synthesis of multi-dimensional
factors. Therefore, its risk evaluation using a single criteria should be extended tomulti-
criteria since the routine of single criteria evaluation often omit important information
and the integrated risk evaluation for flood control project cannot be obtained. The
selection of flood control project also need to consider the social, environment and
technical criteria as well as economic criteria in evaluating alternative for sustainable
floodmanagement. These problems naturally lead to the use of multi-criteria approach
in selection process in which the trade-off between criteria is performed to find out
the best solution.

We have collected data of expert’s evaluation for the possible alternatives of flood
control projects in Kelantan, a state in Malaysia with flood almost once in a year.
Malaysia is the country with two seasons in general. The dry season is usually ranging
from March to October and rainy season from November to February. With the poor
flood management system, the rainy season will be worst to some residents especially
farmers. This would be a highly-justified issue since they will lose their income as
a result of crop damages from flooding. However, we are not going to investigate
the effects of the proposed model to the farmers in this paper. We have consulted
three different groups of expert namely specialize engineers, local authority and a
non-governmental organization (environmentalist). These group of experts will be
explained details later.
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The rest of the paper is organized as follows. Section 2 discusses the theoretical
part consisting the definition of FS and IFS, together with the introduction of CBFS.
Later on, we design our MAGDM model with CBFS concept in Sect. 3. Further, we
show an application of our proposed model in Sect. 4. Section 5 concludes the paper.

2 Preliminaries

In this section, we state the theoretical parts of fuzzy set and intuitionistic fuzzy sets
towards the introduction of conflicting bifuzzy evaluation.

Definition 2.1 Let X be a finite and non-empty set. A fuzzy set A on X is characterized
as

A = {< x, μA(x) > |x ∈ X}, (2.1)

where μA(x) : X → [0, 1] is the membership function of the fuzzy set A.

In a fuzzy set A, an element x which belongs to a finite set X is given the membership
value represents how much x belongs to A. It is clear that fuzzy in all circumstances
describing element with a single value.

It is of special interest to have a look at fuzzy number. We will explain a triangular
fuzzy number (this should be countered most in this paper) rather than other fuzzy
numbers which can be referred in Kaufmann and Gupta (1991). A triangular fuzzy
number can be expressed as A = (a1, a2, a3). For each fuzzy number, the membership
value is computed using the formula,

μA(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x−a1
a2−a1

, a1 ≤ x < a2

1, x = a2
a3−x
a3−a2

, a2 < x ≤ a3

0, otherwise.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

For a1 = a2 = a3, a triangular fuzzy number gives a crisp value and is known as a
special case of the fuzzy number.

Definition 2.2 Given two fuzzy numbers A = (a1, a2, a3) and B = (b1, b2, b3), and
let λ be any real number. Some operations on fuzzy numbers can be expressed as

A × B = (a1 × b1, a2 × b2, a3 × b3)

A/B = (a1/b3, a2/b2, a3/b1)

λ × A = (λ × a1, λ × a2, λ × a3)

Aλ = (aλ
1 , aλ

2 , aλ
3 ). (2.2)

We now proceed to the definition of intuitionistic fuzzy set.

Definition 2.3 Let X be a finite and non-empty set. An intuitionistic fuzzy set A in
X is expressed as

A = {< x, μA(x), νA(x) > |x ∈ X}, (2.3)
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whereμA(x) : X → [0, 1] and νA(x) : X → [0, 1] are the respectivemembership and
non-membership functions of the fuzzy set Awith the condition 0 ≤ μA(x)+νA(x) ≤
1 for all x in X .

As proposed byAtanassov (1986), there exist an intuitionistic index of x in Awhich
can be formulated as πA(x) = 1− μA(x) − νA(x) where 0 ≤ πA(x) ≤ 1. It turns out
that every fuzzy set A can be represented as the following intuitionistic fuzzy set

A = {< x, μA(x), 1 − μA(x) > |x ∈ X},

which proves the absence of hesitancy degree in fuzzy set since

πA(x) = 1 − μA(x) − (1 − μA(x)) = 0.

The νA(x) does not always be 1 − μA(x). Therefore, the sum of membership and
non-membership degrees can be less than one in IFS. However, if we let those degrees
varies within the range [0, 1] for each, then the sum can take any values within the
range [0, 2].

Next, we state the definition of conflicting bifuzzy sets retrieved from Tap (2006)
(see Zamali et al. 2008).

Definition 2.4 Let X be a finite and non-empty set. If
{
A+, A−} be two fuzzy sets

with conflicting characteristic contained in A, then A is called a conflicting bifuzzy
set which can precisely defined as

A = {< x, μA(x), νA(x) > |x ∈ X}, (2.4)

where the function μA(x) : X → [0, 1] and νA(x) : X → [0, 1] represent the degree
of positivity and degree of negativity of the fuzzy set A respectively for all x in X .

The IFS condition is reformulated to be

0 < μA(x) + νA(x) ≤ 1 + ε

where ε is a small nonnegative value, ε ∈ [0, 1
2

)
. If we simultaneously consider the

positivity and negativity, just only one aspect will be dominant at one time, either
positive or vice versa. There will be no possible situation where both appears to be
dominant. Thus implies that the sum of the degrees cannot exceed 11

2 .
In order to integrate the positivity and negativity of attribute for a possible alterna-

tive, one should have a combination operator to deal with. Such combination operators
are the geometricmean (seeGau andBuehrer 1993), arithmeticmean (see Zamali et al.
2008) and multiplicative operator (see Kaufmann and Gupta 1991). For simplicity, we
consider arithmetic mean combination operator defined as

φ(μA(x), ηA(x)) = μA(x) + ηA(x)

2
, (2.5)
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Table 1 Examples of result for different combination operator

Operator Formula (μA(x), νA(x))

(0.7,0.1) (0.7,0.3) (0.7,0.5)

Geometric mean φ(μA(x), ηA(x)) = √
μA(x) × ηA(x) 0.79 0.70 0.59

Arithmetic mean φ(μA(x), ηA(x)) = μA(x)+ηA(x)
2 0.80 0.70 0.60

Multiplicative φ(μA(x), ηA(x)) = μA(x) × ηA(x) 0.63 0.49 0.35

where ηA(x) = 1 − νA(x) is the nonnegativity degree. Here, the degree of nonnega-
tivity would rather be a special interest in solving the decision making problem. We
show some examples of calculations for different combination operators in Table 1.

3 Conflicting Bifuzzy Multi-attribute Group Decision Making Model

This section presents a group decision making model which demonstrates the applica-
bility of CBFS. We deal with positive and negative aspects concurrently resulting to
a fair decision. This model involves three stages which generally classified as rating,
aggregation and selection. Figure 1 shows a general framework of the proposedmodel.
At rating stage, evaluations of alternatives are given by experts based on the objective
and/or subjective attributes. The objective attributes are quantifiable but the subjective
are not. Here, the subjective attribute is expressed in lingustic variable and indirectly
computed by converting it into the fuzzy number.

The linguistic variables are extensively used to describe characteristic which is not
well defined or ambiguous. In the decision making procedure, the rating of alternative
itself cannot be expressed by a conventionalway, insteadwe canuse linguistic variables
such as good, medium or poor to represent it. For our decision making model, we use
the linguistic variables described in Table 2 as adopted from Chen and Hwang (1992)
and Wang and Lee (2009).

The aggregation phase involves setting of weight to each decision maker where the
weight is solely depends on howexpert is the decisionmaker to that particular problem.
The rating of alternative under weighted subjective attributes at previous stage are
then aggregated. For a heterogeneous group of expert, the aggregated decision matrix
obtained at this stage will be used for ranking in the selection phase. The procedure of
fuzzy TOPSISwill be fully utilized in the final stage. The process will last at ranking of
alternative based on the value of closeness coefficient. The alternative with the highest
closeness coefficient will be chosen as the best one.

3.1 Determination of Weights

3.1.1 Weighting an Expert

We use the simple weighted evaluation technique (WET) (see Olcer and Odabasi
2005; Chiclana et al. 2004) to estimate the weight of the decision makers. Let
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AGGREGATION STATE

Experts Weight

Calculate the degree of similarity of 
each pair of experts’ opinions*

Construct the degree agreement 
matrix

Calculate the average degree of 
agreement of each expert

Calculate the relative degree of 
agreement of each expert

RATING STATE

Collection of expert opinions and 
establishing decision matrices* 

Convert all linguistic terms to 
standardized triangular fuzzy

Convert non-standardized TFNs to 
standardized TFNs.

Questionnaires

Conversion Scale

HETEROGENOUS GROUP OF 
EXPERTS

SELECTION STATE
Ranking Phase

β
Coefficient

Weighting 
Data Analysis

The type of 
attributes 

(Cost/Benefit)

Attributes Weight

Subjective 
weight

Objective 
weight

Subjective 
weight

Calculate the consensus degree 
coefficient of each expert

Calculate the aggregate result for 
heterogeneous group of experts

Fig. 1 General framework of the proposed model

w(ek) be a priority degree of expert ek(k = 1, 2, . . . , n) where w(ek) ∈ [0, 1] and∑n
k=1 w(ek) = 1. We first take an expert with the highest priority as proxy and

assign value one to him, r(ek) = 1. The relative priority for the expert-l, r(el)(l =
1, 2, . . . , n − 1) is directly obtained by comparing him to the proxy regarding to his
priority in the group of experts. Hence, we have max{r(e1), r(e2), . . . , r(en)} = 1 and
min{r(e1), r(e2), . . . , r(en)} > 0. The weight of the decision maker w(ek) is defined
as
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Table 2 Linguistic variables
for rating alternative

Level of importance Abbreviation Fuzzy number

Very Poor/Very Low VP/VL (0.00,0.00,0.20)

Poor/Low P/L (0.05,0.20,0.35)

Medium Poor/Medium Low MP/ML (0.20,0.35,0.50)

Medium M (0.35,0.50,0.65)

Medium Good/Medium High MG/MH (0.50,0.65,0.80)

Good/High G/H (0.65,0.80,0.95)

Very Good/Very High VG/VH (0.80,1.00,1.00)

w(ek) = r(ek)
∑n

k=1 r(ek)
. (3.1)

If we let the priority of n experts are equal, then w(ek) = 1/n for k = 1, 2, . . . , n. An
example given to precisely demonstrate the weighting method.

Example 3.1 Consider three experts, e1, e2 and e3 are involved. Assume the expert
e1 has absolute knowledge in evaluating an attribute (let say A1), thus he is assigned
as proxy, given the priority r(e1) = 1. Based on how depth is the expertise of other
two persons, the priority is given, for instance, r(e2) = 0.5 and r(e3) = 0.25. Using
Eq. (3.1), we obtain

w(e1) = 0.571

w(e2) = 0.286

w(e3) = 0.143

and
∑3

k=1 w(ek) = 1.

3.1.2 The Weight of Attribute and Subattribute

In this paper, we integrate the subjective and objective weights to determine the
attribute weight which we refer as an integrated weight. The subjective weight reflects
the subjective judgment of the decision maker (DM) where the preference information
of attributes is directly given, such as AHP method. The objective weight is based on
the objective information obtained by solving a mathematical model automatically
without any consideration of the decision maker preference. Weight determined by
subjective approach reflect the subjective judgment of the decision maker, therefore
the ranking of alternatives in fuzzy MAGDM problem contains more arbitrary fac-
tors. The objective approach select weight through mathematical calculation, which
neglects subjective judgment information of the decision maker (see Liu and Kong
2005).

Determination of weight relies on expert’s knowledge and experience which typ-
ically characterized as subjective evaluation and does not consider the relationship
between objects evaluated. By considering AHP as a subjective weight is inadequate
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Table 3 Linguistic variable for
the weight of attribute and its
corresponding fuzzy number

Linguistic term Mean of
fuzzy number

Triangular
fuzzy number

Equally important 1̃ (1,1,1)

Intermediate value between 1̃
and 3̃

2̃ (1,2,3)

Moderately important 3̃ (2,3,4)

Intermediate value between 3̃
and 5̃

4̃ (3,4,5)

Essentially important 5̃ (4,5,6)

Intermediate value between 5̃
and 7̃

6̃ (5,6,7)

Very vital important 7̃ (6,7,8)

Intermediate value between 7̃
and 9̃

8̃ (7,8,9)

Extremely vital important 9̃ (9,9,9)

to capture priority in the assessment of alternative (see Wang et al. 2008). The subjec-
tive approach will be more consistent with the integration of objective approach and
the integration method is more desirable in the computation of weight. We use the
linguistic terms described in Table 3 to form a pairwise comparison matrix where the
evaluation is based on its corresponding mean of fuzzy number.

The procedure starts with the determination of weight for attribute-i, watt
i . Assume

that a set ofm attributes Ai , i = 1, . . . ,m is given. A fuzzy reciprocal judgmentmatrix
for attributes is then defined as

D =

⎡

⎢
⎢
⎢
⎣

ã11 ã12 · · · ã1m
ã21 ã22 · · · ã2m
...

...
. . .

...

ãm1 ãm2 · · · ãmm

⎤

⎥
⎥
⎥
⎦

,

where ãi j = 1̃ = (1, 1, 1) for all i = j (i, j = 1, 2, . . . ,m) and ã j i = 1/ãi j for
i �= j . By applying the fuzzy synthetic extent, we obtain the corresponding weight
for attribute as

watt
i =

m∑

i=1, j=1

ãi j ⊗
⎡

⎣
m∑

i=1

m∑

j=1

ãi j

⎤

⎦

−1

, i = 1, 2, . . . ,m. (3.2)

The weights watt
i are in normalized fuzzy numbers. Note that Eq. (3.2) may result

from fuzzy arithmetics, or it can be derived from extension principle.
The attribute Ai normally has k subattributes. Thus, it is important to determine

the relative importance of subattribute to that particular attribute. We define the fuzzy
judgment matrix for k subattributes with respect to attribute Ai as
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Di =

⎡

⎢
⎢
⎢
⎣

ã1i1i ã1i2i · · · ã1i ki
ã2i1i ã2i2i · · · ã2i ki

...
...

. . .
...

ãki1i ãki2i · · · ãki ki

⎤

⎥
⎥
⎥
⎦

,

where ãuivi for u, v = 1, . . . , ki is evaluated using Table 3.
By multiplying subattribute’s weight to the respective attribute weight in Eq. (3.2),

we derive the final weight for subattribute through the aggregation of weights at two
consecutive levels as

w
agg
i j = watt

i ⊗ wsub
i j , for i, j = 1, 2, . . . ,m, (3.3)

where w
agg
i j is the aggregated fuzzy weight of subattribute and

wsub
i j =

⎡

⎢
⎣

ki∑

i=1

ãi j ⊗
⎡

⎣
ki∑

i=1

ki∑

j=1

ãi j

⎤

⎦

−1
⎤

⎥
⎦ .

Hence, the entries of the weight vector, wsubj
i j with length k,

w
subj
i j =

(
w

agg
i j

)

=
(
w

agg
11 , w

agg
12 , . . . , w

agg
1k1

, w
agg
21 , w

agg
22 , . . . , w

agg
2k2

, . . . , w
agg
m1 , w

agg
m2 , . . . , w

agg
mkm

)
.

As a part of the procedure in fuzzy AHP method, the determination of consistency
index (CI) seems compulsory as it prescribes the acceptance level of the pairwise
comparison matrix. To obtain CI, we first multiply the matrix with its priority vector,

⎡

⎢
⎢
⎢
⎣

w1
w1

w1
w2

· · · w1
wm

w2
w1

1 · · · w2
wm

...
...

. . .
...

wm
w1

wm
w2

· · · wm
wm

⎤

⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎣

w1
w2
...

wm

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

r1
r2
...

rm

⎤

⎥
⎥
⎥
⎦

.

Then, we divide ri (i = 1, . . . ,m) with its corresponding priority vector,

⎡

⎢
⎢
⎢
⎣

r1
w1r2
w2
...
rm
wm

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

λ1
λ2
...

λm

⎤

⎥
⎥
⎥
⎦

.
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Table 4 Consistency index of a randomly generated reciprocal matrix

m 1 2 3 4 5 6 7 8 9 10

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

The consistency index can now be computed using

CI = (λmax − m)

m − 1
, (3.4)

where λmax = λ1+λ2+...+λm
m . Finally, we calculate the consistency ratio (CR) using

CR = CI

RI
, (3.5)

where RI represents the random index (the consistency index of a randomly generated
pairwise comparison matrix). The RI depends on the number of element/criteria m
being compared as presented in Table 4. Readers are encouraged to refer Saaty (1980)
for detailed of consistency ratio.

We now turn to the procedure of obtaining the objective weight, w
obj
i . Suppose

we have a decision matrix for n-alternatives and m-attributes, DM = (xi j
)

m×n , i =
1, 2, . . . ,m, j = 1, 2, . . . , n. By normalizing the DM , we obtain a matrix ̂DM =(
zi j
)
, where zi j is the normalized value of the evaluation of j-th alternative with respect

to i-th attribute and zi j ∈ [0, 1]. Among these attributes, to which the bigger is better,

zi j = xi j − min j
{
xi j
}

max j
{
xi j
}− min j

{
xi j
} , (3.6)

while the smaller is better,

zi j = max j
{
xi j
}− xi j

max j
{
xi j
}− min j

{
xi j
} . (3.7)

We calculate the entropy using

Ei j = −k
m∑

i=1

fi j ln fi j , i = 1, 2, . . . ,m (3.8)

where fi j = zi j/
∑n

j=1 zi j and k = 1/ ln n. The objective weight is defined as

w
obj
i j = 1 − Ei j

m −∑m
i=1 Ei j

. (3.9)

The sum of w
obj
i j is equal to 1 and w

obj
i j ∈ [0, 1].
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Lastly, the (subjective) weight calculated from fuzzy AHP is integrated with the
(objective) weight to obtain fuzzy integrated weight �i j using (see Liu and Kong
2005; Wang et al. 2008),

�i j =
(
w

subj
i j

)λ ⊗
(
w

obj
i j

)1−λ

∑m
i=1

((
w

subj
i j

)λ ⊗
(
w

obj
i j

)1−λ
) , (3.10)

where λ represents the relative importance of the subjective and objective weights to
decision maker. Note that the value of subjective weight is in fuzzy number and the
objective weight is in crisp. Therefore, the fuzzy integrated weight is a multiplication
of fuzzy number with a scalar. The weight is an indicator that does not only shows
how important an attribute is, but also shows the level of difference of attribute for
different alternatives (see Liu and Kong 2005).

3.2 Rating Phase

Assume that we have n alternatives and m attributes. The CBFS decision matrix is
given by

DMCBFS =

⎡

⎢
⎢
⎢
⎣

(R+
11, R

−
11) (R+

12, R
−
12) · · · (R+

1 j , R
−
1 j )

(R+
21, R

−
21) (R+

22, R
−
22) · · · (R+

2 j , R
−
2 j )

...
...

. . .
...

(R+
i1, R

−
i1) (R+

i2, R
−
i2) · · · (R+

nm, R−
nm)

⎤

⎥
⎥
⎥
⎦

where R+
i j =

(
a+
i j , b

+
i j , c

+
i j

)
and R−

i j =
(
a−
i j , b

−
i j , c

−
i j

)
are ratings for the positive and

negative parts with respect to ith-alternative and jth-attribute being described by a
triangular fuzzy number. The rating is based on linguistic variables defined in Table 2.

Some modification should be made to those fuzzy numbers which are not normal.
In order to do so, assume that we have a positive triangular fuzzy number R∗

i j =
(a∗

i j , b
∗
i j , c

∗
i j ) of rating alternative with respect to subjective attribute where 0 ≤ a(·)

i j ≤
b(·)
i j ≤ c(·)

i j ≤ m. The fuzzy number is converted to a new normalized fuzzy number
using

R∗
i j = (a∗

i j , b
∗
i j , c

∗
i j ) =

(
a(·)
i j

h
,
b(·)
i j

h
,
c(·)
i j

h

)

(3.11)

where 0 ≤ a∗
i j ≤ b∗

i j ≤ c∗
i j ≤ 1 and h is the maximum value of non-normal fuzzy

number.

3.3 Aggregation Phase

It is crucial to find a similarity degree for heterogeneous group of experts where
different evaluations are given to each alternative. For k finite number of decision
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makers, we obtain the similarity degree of each pair of expert (eu, ev) for u, v =
1, . . . , k and u �= v by computing the similarity measure Suv(Ru, Rv). Let M =
Ru = (R+

i j , R
−
i j )u and N = Rv = (R+

i j , R
−
i j )v , then the similarity measure can be

calculated using

Suv(M, N ) = 1 −
(

n∑

i=1

ϕ1(xi ) + ϕ2(xi )

2n

)

(3.12)

where,

ϕ1(xi ) =
∣
∣
∣
∣

(
μM (xi ) + (1 − γM (xi ))

2

)

−
(

μN (xi ) + (1 − νN (xi ))

2

)∣
∣
∣
∣ , and

ϕ2(xi ) =
∣
∣
∣
∣
μM (xi ) − μN (xi )

2

∣
∣
∣
∣+
∣
∣
∣
∣
1 − γM (xi )

2
− 1 − νN (xi )

2

∣
∣
∣
∣ .

The similarity degree measures how similar is M to N for uv-pair of expert. The
higher value of Suv(M, N ) indicates that M is more similar to N . In other words,
if Suv(M, N ) = 1, then M is almost surely equivalence to N . It is worth noted that
Suv(M, N ) = Suv(N , M). Further, we construct the agreement matrix as

AM =

⎡

⎢
⎢
⎢
⎣

S11 S12 · · · S1k
S21 S22 · · · S2k
...

...
. . .

...

Sk1 Sk2 · · · Skk

⎤

⎥
⎥
⎥
⎦

where Suv(M, N ) = Suv for u �= v and Suv = 1 for u = v. We take average of the
similarity degree for the expert eu by computing

S̄(eu) = 1

k − 1

k∑

u,v=1
u �=v

Suv. (3.13)

Next, we find the relative similarity degree S̃(eu) according to (3.13),

S̃(eu) = S̄(eu)
∑k

u=1 S̄(eu)
. (3.14)

By using a relaxation factor β, (0 ≤ β ≤ 1) and the relative similarity degree S̃(eu),
the consensus coefficient ĈC(eu) is calculated as

ĈC(eu) = βw(eu) + (1 − β)S̃(eu), (3.15)

where w(eu) is the weight of the expert u obtained from Eq. (3.1). The last step is to
compute aggregated fuzzy evaluation, Ragg using
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Ragg =
[
ĈC(e1) ⊗ R̂1 ⊕ ĈC(e2) ⊗ R̂2 ⊕ . . . ⊕ ĈC(ek) ⊗ R̂k

]
(3.16)

where

R̂i = R+
i ⊕ (1 − R−

i

)

2
(3.17)

=
⎛

⎝
a+
i j +

(
1 − c−

i j

)

2
,
b+
i j +

(
1 − b−

i j

)

2
,
c+
i j +

(
1 − a−

i j

)

2

⎞

⎠ . (3.18)

The aggregated fuzzy evaluation will be used to rank alternatives in the next stage.

3.4 Selection Phase

We present a general idea of fuzzy TOPSIS and the detailed procedure can be referred
in Chen (2000). According to benefit-cost related attributes, we initially obtain nor-
malized fuzzy decision matrix R̃ = [r̃i j

]

m×n by normalizing Ragg using

r̃i j =
{
ai j
c+
i j

,
bi j
c+
i j

,
ci j
c+
i j

}

, c+
j = max ci j if j ∈ B, i = 1, 2, . . . ,m (3.19)

r̃i j =
{
a−
i j

ci j
,
a−
i j

bi j
,
a−
i j

ai j

}

, a−
j = min ai j if j ∈ C, i = 1, 2, . . . ,m (3.20)

where B and C are the set of benefit criteria and the set of cost criteria respectively.
Next, we calculate the overall performance evaluation of alternative by multiplying

the weight to each normalized attribute, ṽi j = r̃i j ⊗ �i for i = 1, 2, . . . ,m, j =
1, 2, . . . , k, yielding

Ṽ = [ṽi j
]

mk , (3.21)

The positive ideal solution ṽ+ and negative ideal solution ṽ− will then be computed
with ṽ+

i = max j ṽi j and ṽ−
i = min j ṽi j and are sorted in descending order as

ṽ+ = max
(
ṽ+
1 , ṽ+

2 , . . . , ṽ+
m

)
, ṽ− = min

(
ṽ−
1 , ṽ−

2 , . . . , ṽ−
m

)
. (3.22)

We calculate the distance of the fuzzy decision ṽi j to the positive ideal solution
ṽ+ = (a+, b+, c+) or negative ideal solution ṽ− = (a−, b−, c−) using

d(ṽi j , ṽ
(·)) =

√
1

3

[
(ai j − a(·))2 + (bi j − b(·))2 + (ci j − c(·))2

]
, (3.23)

and

d+
i =

k∑

j=1

d
(
ṽi j , ṽ

+) , d−
i =

k∑

j=1

d
(
ṽi j , ṽ

−) . (3.24)
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Finally, the alternatives are ranked by computing its closeness coefficient,

CC = d−
i

d+
i + d−

i

. (3.25)

The alternative with the highest closeness coefficient will be chosen as the best alter-
native.

3.5 Algorithm for CBFS-MAGDM Model

Step 1: Establish a CBFS decision matrix, DMCBFS for each expert.
Step 2: Transform the bifuzzy data into a normalized positive triangular fuzzy

number using Eq. (3.11).
Step 3: Assign the relative importance or weight for experts and attributes using

Eq. (3.1)–(3.10).
Step 4: Measure the similarity degree using Eq. (3.12). Construct the agreement

matrix, the average degree of agreement, the relative degree of agreement and the
consensus coefficient by using Eq. (3.13)–(3.15). Then, aggregate all expert’s fuzzy
evaluation for each alternative using Eq. (3.16).

Step 5: Construct the normalized rating and weighted normalized rating using
Eq. (3.19)–(3.21).

Step 6: Calculate the positive-ideal solution, the negative-ideal solution and com-
pute the distance of fuzzy decision to the positive and negative ideal solution using
Eq. (3.22)–(3.24).

Step 7: Calculate the closeness coefficient CC using Eq. (3.25). Rank the alternative
according to the value of its closeness coefficient.

4 On the Selection of Flood Control Project

We applied our model to the selection problem of flood control project. There are four
alternatives to be considered namely reservoir (X1), channel improvement (X2), diver-
sion scheme (X3) and dikes (X4). Each alternative is evaluated based on four attributes
consist of economical factor (A1), social factor (A2), environmental factor (A3) and
technical factor (A4). The attributes together with their corresponding subattributes
are listed in Table 5. Evaluation of alternatives with respect to attribute and subattribute
are bi-valued except for money term factors, A11 and A12 and a time-based factor,
A41. We choose three group of experts in the decision processes including specialize
engineers in the Department of Drainage and Irrigation, Kelantan (e1), Kelantan’s
local authority (e2) and Malaysian non-governmental organization (e3).

First, we establish a CBFS decision matrix for rating alternative with respect to
the given attributes and subattributes. We refer to Step 1 in Sect. 3.5. The rating of
alternatives are obtained from expert’s evaluation and presented in Table 6. We see
that the ratings are in linguistic variable being described in Table 2, except evaluation
for project cost (A11), operation and maintenance (A12) and lifetime (A41). For X1,
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Table 5 List of attributes and
corresponding subattributes

Attribute Subattribute

Economical (A1) Project cost (A11)

Operation and maintenance cost (A12)

Project benefit (A13)

Reliability economic parameter (A14)

Social (A2) Social acceptability (A21)

Effect on demographic (A22)

Effect on structure (A23)

Recreation activity (A24)

Environmental (A3) Water quality impact (A31)

Nature conservation (A32)

Soil impact (A33)

Landscape (A34)

Sanitary condition (A35)

Technical (A4) Lifetime (A41)

Adaptability (A42)

Level of protection (A43)

Technical complexity (A44)

Flexibility (A45)

the expert e2 and e3 rated medium high to the positive part of soil impact (A33), but
the rating for negative side are different. Expert e2 felt that reservoir will result of
moderate low negative impact to soil and e3 thought of low negative soil impact.

The experts agreed that the cost of running all alternatives is very high, approx-
imately ranging from 0.6 to 2.1 billion Ringgit Malaysia (reflects the cost for
maintenance and project and operation). Furthermore, different alternative has dif-
ferent lifetime. Reservoir can retain up to 100 years while the rest can operates just in
the 10 years. At first glimpse, we see that reservoir is not efficient economically as it
requires very high running cost eventhough the contribution to the positive impact to
social and environment is high. The channel improvement is the most admissable if
the budget is limited, but the positive impact to all factors are considerably moderate.
The other two alternatives have moderate impact to all factors.

Some subattributes in the decision matrix are in money term and time-based which
should be normalized. We refer to Step 2 in Sect. 3.5 to normalize rating for subat-
tributes A11, A12 and A41. While other factor remains the same, we just show the
normalized decision matrix for those three subattributes in Table 7. Due to the lack of
knowledge of expert for certain attribute, we define weight to each expert as in Step
3 in Sect. 3.5. We admit that specialize engineer, e1 has the highest priority in this
decision making processes. Therefore, we choose e1 to be the proxy and the weight
of experts will be determined according to the degree of importance as calculated
using Eq. (3.1). In parallel, we calculate the weight for attribute (and subattribute)
using fuzzy AHP for subjective weight and entropy method for objective weight. The
results for subjective and objective weights are shown in Tables 8 and 9 respectively.
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Table 7 The normalized decision matrix for the three subattributes

Attribute X1 X2 X3 X4

A11 (0.818,0.909,1.000) (0.364,0.445,0.545) (0.136,0.227,0.318) (0.136,0.227,0.318)

A12 (0.091,0.182,0.273) (0.818,0.909,1.000) (0.091,0.182,0.273) (0.818,0.909,1.000)

A41 (0.091,0.182,0.273) (0.073,0.091,0.109) (0.073,0.091,0.109) (0.073,0.091,0.109)

Table 8 The subjective weight for attributes and subattributes and the aggregated weight

Attribute watt
i Subattribute wsub

i j w
agg
i j

A1 (0.304,0.460,0.687) A11 (0.140,0.239,0.391) (0.042,0.110,0.269)

A12 (0.147,0.220,0.343) (0.045,0.101,0.236)

A13 (0.319,0.489,0.742) (0.097,0.225,0.509)

A14 (0.040,0.052,0.072) (0.012,0.024,0.049)

A2 (0.237,0.353,0.534) A21 (0.256,0.471,0.840) (0.061,0.166,0.449)

A22 (0.083,0.164,0.330) (0.020,0.058,0.176)

A23 (0.139,0.278,0.540) (0.033,0.098,0.288)

A24 (0.056,0.087,0.165) (0.013,0.031,0.088)

A3 (0.085,0.137,0.213) A31 (0.178,0.334,0.637) (0.015,0.047,0.136)

A32 (0.076,0.137,0.262) (0.006,0.019,0.056)

A33 (0.145,0.278,0.524) (0.012,0.038,0.112)

A34 (0.037,0.056,0.097) (0.003,0.008,0.021)

A35 (0.092,0.185,0.375) (0.008,0.025,0.080)

A4 (0.038,0.050,0.071) A41 (0.185,0.293,0.458) (0.007,0.015,0.033)

A42 (0.142,0.225,0.366) (0.005,0.011,0.026)

A43 (0.230,0.367,0.576) (0.009,0.019,0.041)

A44 (0.042,0.075,0.126) (0.002,0.004,0.009)

A45 (0.029,0.041,0.068) (0.001,0.002,0.005)

For the sake of simplicity, we use the mean of fuzzy number as in Table 3 to calcu-
late the consistency ratio. We obtain the consistency ratio equal 0.059 accepting the
validity of our pairwise comparison matrix.

Expert’s rating are then aggregated using Eq. (3.12)–(3.16). We refer to Step 4 in
Sect. 3.5. The value β is set to 0.4 represent the expert dominance for this problem.
We report the aggregated fuzzy rating in Table 10. Next, the normalized ratings and
weighted normalized ratings of the matrices are constructed using Eq. (3.19)–(3.21).
We refer to Step 5 in Sect. 3.5. Tables 11 and 12 respectively present the fuzzy normal-
ized rating and the weighted fuzzy normalized rating. Note that Table 12 is obtained
by multiplying the integrated weight reported in Table 9 with fuzzy normalized rating.

The positive ideal solution and negative ideal solution are then calculated using
Eq. (3.23), and the distance measure is computed using Eq. (3.25). We refer to Step
6 in Sect. 3.5. We simply determine the positive ideal solution by taking the element
with the highest value for the benefit attribute and the element with the lowest value
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Table 9 The objective weight
and integrated weight Attribute Subattribute Entropy w

obj
i j �i j

A1 A11 0.781 0.040 (0.0017,0.0044,0.0108)

A12 0.500 0.091 (0.0041,0.0092,0.0215)

A13 0.753 0.045 (0.0044,0.0101,0.0229)

A14 0.763 0.043 (0.0005,0.0010,0.0021)

A2 A21 0.646 0.064 (0.0039,0.0106,0.0287)

A22 0.588 0.075 (0.0015,0.0043,0.0132)

A23 0.728 0.049 (0.0016,0.0048,0.0141)

A24 0.791 0.038 (0.0005,0.0012,0.0033)

A3 A31 0.762 0.043 (0.0006,0.0020,0.0058)

A32 0.766 0.042 (0.0003,0.0008,0.0024)

A33 0.785 0.039 (0.0005,0.0015,0.0044)

A34 0.792 0.038 (0.0001,0.0003,0.0008)

A35 0.792 0.038 (0.0003,0.0010,0.0030)

A4 A41 0.000 0.181 (0.0013,0.0027,0.0060)

A42 0.773 0.041 (0.0002,0.0005,0.0011)

A43 0.790 0.038 (0.0003,0.0007,0.0016)

A44 0.726 0.050 (0.0001,0.0002,0.0005)

A45 0.741 0.047 (0.0000,0.0001,0.0002)

Table 10 The aggregated fuzzy rating for heterogeneous group of experts

Attribute Subattribute X1 X2 X3 X4

A1 A11 (0.818,0.909,1.000) (0.364,0.455,0.545) (0.136,0.227,0.318) (0.136,0.227,0.318)

A12 (0.091,0.182,0.273) (0.818,0.909,1.000) (0.091,0.182,0.273) (0.818,0.909,1.000)

A13 (0.725,0.900,0.975) (0.408,0.558,0.708) (0.548,0.698,0.848) (0.687,0.770,0.920)

A14 (0.587,0.737,0.887) (0.425,0.575,0.725) (0.487,0.637,0.787) (0.603,0.753,0.903)

A2 A21 (0.572,0.722,0.872) (0.652,0.820,0.918) (0.530,0.680,0.830) (0.575,0.725,0.875)

A22 (0.436,0.586,0.736) (0.695,0.860,0.965) (0.400,0.550,0.700) (0.550,0.700,0.850)

A23 (0.558,0.708,0.858) (0.524,0.682,0.808) (0.470,0.620,0.770) (0.626,0.776,0.926)

A24 (0.674,0.832,0.958) (0.192,0.318,0.476) (0.559,0.757,0.883) (0.621,0.779,0.906)

A3 A31 (0.602,0.752,0.902) (0.446,0.596,0.746) (0.518,0.668,0.818) (0.605,0.755,0.905)

A32 (0.523,0.673,0.823) (0.123,0.242,0.402) (0.318,0.468,0.618) (0.478,0.628,0.778)

A33 (0.557,0.707,0.857) (0.408,0.558,0.708) (0.509,0.659,0.809) (0.500,0.065,0.800)

A34 (0.701,0.868,0.967) (0.529,0.686,0.816) (0.641,0.798,0.927) (0.725,0.900,0.975)

A35 (0.552,0.702,0.852) (0.032,0.130,0.297) (0.500,0.650,0.800) (0.530,0.680,0.830)

A4 A41 (0.818,0.909,1.000) (0.073,0.091,0.109) (0.073,0.091,0.109) (0.073,0.091,0.109)

A42 (0.680,0.840,0.960) (0.395,0.545,0.695) (0.545,0.695,0.845) (0.605,0.755,0.905)

A43 (0.656,0.816,0.936) (0.259,0.409,0.559) (0.592,0.742,0.892) (0.623,0.776,0.926)

A44 (0.632,0.782,0.932) (0.477,0.627,0.777) (0.384,0.534,0.684) (0.558,0.708,0.858)

A45 (0.698,0.864,0.966) (0.395,0.545,0.695) (0.575,0.725,0.875) (0.315,0.680,0.830)
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Table 11 Fuzzy normalized ratings for heterogeneous group of experts

Attribute Subattribute X1 X2 X3 X4

A1 A11 (0.136,0.150,0.166) (0.249,0.299,0.374) (0.427,0.598,1.000) (0.427,0.598,1.000)

A12 (0.333,0.500,1.000) (0.091,0.100,0.111) (0.333,0.500,1.000) (0.091,0.100,0.111)

A13 (0.744,0.923,1.000) (0.419,0.573,0.726) (0.562,0.716,0.870) (0.705,0.790,0.944)

A14 (0.650,0.816,0.982) (0.471,0.637,0.803) (0.539,0.705,0.871) (0.668,0.834,1.000)

A2 A21 (0.623,0.787,0.950) (0.711,0.893,1.000) (0.577,0.740,0.904) (0.626,0.790,0.953)

A22 (0.451,0.607,0.762) (0.720,0.892,1.000) (0.414,0.570,0.725) (0.570,0.725,0.881)

A23 (0.603,0.765,0.927) (0.565,0.736,0.872) (0.507,0.669,0.831) (0.676,0.838,1.000)

A24 (0.703,0.868,1.000) (0.201,0.332,0.497) (0.625,0.790,0.922) (0.649,0.813,0.946)

A3 A31 (0.665,0.831,0.997) (0.493,0.659,0.825) (0.572,0.738,0.904) (0.668,0.834,1.000)

A32 (0.635,0.818,1.000) (0.149,0.294,0.489) (0.387,0.569,0.751) (0.581,0.763,0.945)

A33 (0.650,0.825,1.000) (0.476,0.651,0.826) (0.594,0.769,0.944) (0.583,0.758,0.933)

A34 (0.719,0.891,0.992) (0.543,0.704,0.837) (0.658,0.818,0.951) (0.744,0.923,1.000)

A35 (0.648,0.824,1.000) (0.038,0.152,0.349) (0.587,0.763,0.939) (0.622,0.799,0.975)

A4 A41 (0.818,0.909,1.000) (0.073,0.091,0.109) (0.073,0.091,0.109) (0.073,0.091,0.109)

A42 (0.708,0.875,1.000) (0.412,0.568,0.724) (0.568,0.724,0.881) (0.631,0.787,0.943)

A43 (0.701,0.872,1.000) (0.276,0.436,0.597) (0.632,0.792,0.952) (0.666,0.829,0.990)

A44 (0.678,0.839,1.000) (0.512,0.673,0.834) (0.412,0.573,0.734) (0.599,0.760,0.921)

A45 (0.723,0.895,1.000) (0.409,0.565,0.720) (0.595,0.750,0.906) (0.326,0.703,0.859)

Table 12 The weighted fuzzy normalized ratings for heterogeneous group of experts

Attribute Subattribute X1 X2 X3 X4

A1 A11 (0.004,0.012,0.032) (0.007,0.023,0.072) (0.013,0.047,0.193) (0.013,0.047,0.193)

A12 (0.016,0.056,0.274) (0.004,0.011,0.030) (0.016,0.056,0.274) (0.004,0.011,0.030)

A13 (0.036,0.109,0.282) (0.021,0.070,0.210) (0.027,0.084,0.245) (0.039,0.092,0.264)

A14 (0.011,0.031,0.086) (0.008,0.024,0.069) (0.009,0.026,0.073) (0.011,0.031,0.086)

A2 A21 (0.028,0.094,0.298) (0.033,0.110,0.317) (0.026,0.090,0.287) (0.028,0.095,0.300)

A22 (0.013,0.047,0.163) (0.020,0.068,0.215) (0.012,0.044,0.156) (0.016,0.056,0.189)

A23 (0.018,0.063,0.209) (0.017,0.060,0.194) (0.015,0.054,0.184) (0.020,0.069,0.223)

A24 (0.012,0.035,0.108) (0.003,0.013,0.054) (0.010,0.032,0.100) (0.011,0.033,0.102)

A3 A31 (0.012,0.044,0.142) (0.009,0.034,0.116) (0.010,0.038,0.127) (0.012,0.044,0.143)

A32 (0.008,0.027,0.091) (0.002,0.009,0.043) (0.005,0.019,0.068) (0.007,0.026,0.087)

A33 (0.011,0.037,0.124) (0.008,0.030,0.103) (0.010,0.035,0.117) (0.009,0.034,0.114)

A34 (0.006,0.018,0.052) (0.004,0.014,0.043) (0.005,0.016,0.049) (0.006,0.018,0.052)

A35 (0.008,0.030,0.103) (0.000,0.005,0.035) (0.007,0.028,0.096) (0.008,0.029,0.100)

A4 A41 (0.021,0.055,0.144) (0.002,0.006,0.016) (0.002,0.006,0.016) (0.002,0.006,0.016)

A42 (0.008,0.022,0.061) (0.004,0.014,0.044) (0.006,0.018,0.054) (0.007,0.020,0.058)

A43 (0.009,0.026,0.074) (0.004,0.013,0.043) (0.008,0.024,0.069) (0.009,0.026,0.073)

A44 (0.004,0.014,0.040) (0.003,0.011,0.033) (0.002,0.009,0.028) (0.004,0.012,0.037)

A45 (0.004,0.010,0.028) (0.002,0.006,0.020) (0.003,0.009,0.026) (0.002,0.008,0.025)
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Table 13 The positive ideal
solution and negative ideal
solution for heterogeneous
group of experts

Attribute Subattribute ṽ+ ṽ−

A1 A11 (0.013,0.047,0.193) (0.004,0.012,0.032)

A12 (0.016,0.056,0.274) (0.004,0.011,0.030)

A13 (0.039,0.109,0.282) (0.021,0.070,0.210)

A14 (0.011,0.031,0.086) (0.008,0.024,0.069)

A2 A21 (0.033,0.110,0.317) (0.026,0.090,0.287)

A22 (0.020,0.068,0.215) (0.012,0.044,0.156)

A23 (0.020,0.069,0.223) (0.015,0.054,0.184)

A24 (0.012,0.035,0.108) (0.003,0.013,0.054)

A3 A31 (0.012,0.044,0.143) (0.009,0.034,0.116)

A32 (0.008,0.027,0.091) (0.002,0.009,0.043)

A33 (0.011,0.037,0.124) (0.008,0.030,0.103)

A34 (0.006,0.018,0.052) (0.004,0.014,0.043)

A35 (0.008,0.030,0.103) (0.000,0.005,0.035)

A3 A41 (0.021,0.055,0.144) (0.002,0.006,0.016)

A42 (0.008,0.022,0.061) (0.004,0.014,0.044)

A43 (0.009,0.027,0.074) (0.004,0.013,0.043)

A44 (0.004,0.014,0.040) (0.002,0.009,0.028)

A45 (0.004,0.010,0.028) (0.002,0.006,0.020)

Table 14 Distance measure to
positive ideal solution and
negative ideal solution using
CBFS-MAGDM

X1 X2 X3 X4

d+
i 0.152 0.552 0.249 0.286

d−
i 0.492 0.092 0.395 0.359

CC 0.764 0.142 0.613 0.556

Ranking 1 4 2 3

for the cost attribute. In contrast, the negative ideal solution is determined by taking
the element with opposite values of benefit and cost attributes. The result are reported
in Table 13. Next, Table 14 shows the distance measure to the positive and negative
ideal solutions and its corresponding closeness coefficient as in Step 7 in Sect. 3.5.

We found X1 
 X3 
 X4 
 X2, meaning that the best flood control project is
reservoir and the worst is channel improvement. Reservoir is the highest cost project
which was initially seems unefficient as it budget sensitive. However, it has a longer
lifetime and a very high rating for its technicality on average. Furthermore, it conserves
nature and has a high impact to society. Eventhough channel improvement use less
money but it should be maintened for estimated every 10 years. In addition, we see
that it has on average moderate impact to social and environment. Thus, the experts
have selected reservoir to be the best alternative in controlling the flood.

In comparison, we show the ranking calculated based on fuzzy MAGDM in
Table 15.We see that the ranking are similar for fuzzyMAGDMand CBFS-MAGDM.
In general, the CC value for all alternatives are greater for CBFS-MAGDM except
for channel improvement (X2) where the earlier method gives CC’s value 0.300. The
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Table 15 Distance measure to
the positive ideal solution and
negative ideal solution using
fuzzy MAGDM

X1 X2 X3 X4

d+
i 0.313 0.666 0.441 0.470

d−
i 0.638 0.285 0.511 0.482

CC 0.671 0.300 0.537 0.506

Ranking 1 4 2 3

Table 16 Estimated CC for
different β

β X1 X2 X3 X4

0.0 0.765 0.141 0.621 0.558

0.2 0.764 0.142 0.617 0.557

0.4 0.764 0.142 0.613 0.556

0.6 0.764 0.143 0.610 0.556

0.8 0.763 0.143 0.607 0.555

1.0 0.761 0.144 0.603 0.554

result justifies the influence of two-sided judgment. In the case of complementary, i.e
the sum of positive and negative membership values equal one, the decision process
may not influenced by any of evaluation’s side. Therefore, fuzzy approach is adequate.
For no complementary case, the result may change. If the sum of positive and negative
evaluation is less than one, we will see a greater result. On the other hand, if the sum
of positive and negative aspects is greater than one, then one will have a lower result.

Another important note is the objective weight for fuzzy MAGDM derived from
entropy method is different from the case of CBFS-MAGDM since the analysis data
is based on single-side evaluation of experts. Hence, the final weight (an integration
of the subjective and objective weights) of CBFS-MAGDM method also produces
different results and affects the final decision.

4.1 Sensitivity of Coefficient β

Sensitivity analysis is performed to see the effect of coefficient β to the final ranking.
The β takes value in the interval [0, 1]. Table 16 shows the closeness coefficient
computed for several β. Since the CC values do not much deviate, we may conclude
that this case is not β sensitive. The ranking stays at relatively the same level.

5 Conclusion

We have designed a group decision making model based on a new conflicting bifuzzy
approach. The newmodel considers two conflicting perspectives, i.e. positive and neg-
ative views which will then be integrated using arithmetic mean combination operator.
We show that the model is fair enough to deal with the (not significant) data restricted
by FS and IFS. Thus, the proposed model provides a better solution to the empirical
case with similar features.
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The weight is given to the decision makers, attributes and subattributes represent
their degree of importance. For the decision maker, the weight is calculated using
weighted evaluation technique. We integrate the subjective and objective weights for
the attribute and subattribute which reflects the subjective rating of the expert and
objective information obtained from a mathematical model respectively. The fuzzy
AHP method computes the subjective weight, and we use the entropy method to
calculate the objective weight.

We show the capability of the model using data of expert’s rating for flood control
project. The pairwise comparison matrix was performed to rate the alternatives. By
having consistency ratio in the fuzzy AHP method, we see that the rating matrix is
acceptable. To aggregate the rating,we present several different expert’s dominance for
the decision problem. The result indicates that the dominance issue is not so important
in the decision process.

In comparison to the fuzzy MAGDM model, we show the final result of both
methods. The fuzzy MAGDM and CBFS-MAGDM models produce similar ranking;
the reservoir is the best solution and the channel improvement is the last. However,
the value of the closeness coefficient is different. We see that CBFS-MAGDM gives
higher closeness coefficient.

We suggest to formulate conflicting index in the bifuzzy evaluation for further
research. The conflicting index can be defined as the degree of conflict between positive
and negative views to certain attribute. One can use our suggested similarity measure
of two experts as a stepping stone but this is not the case of conflicting between experts,
but would be an internal conflict of attribute which can be measured externally. Also,
the objective weight can be alternatively measured using a reference point method
(see e.g. Wierzbicki 1980; Wierzbicki et al. 2000), ordered weighted average, choquet
integral weight which are left for future extension.

The application of our proposed model is not limited to the selection problem
of flood control projects. We may apply the model to other real decision problems
having similar features, namely the: conflicting condition, incomplete information and
non-standard data structure. The potential area are in construction project and energy
planning. Ourmodel is designed to solve the conflicting judgment between the experts,
thus provides a better policy for the use of energy in the future. The construction project
is similar to our empirical case. With the aim to minimizing the cost and maximizing
the profit, the conflicting condition and incomplete information for each candidate
should be carefully revised. However, this model is rich of complexity, thus stipulate
one to consume expensive time to run.
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