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Abstract
Cambay amber originates from the warmest period of the Eocene, which is also well known

for the appearance of early angiosperm-dominated megathermal forests. The humid climate

of these forests may have triggered the evolution of epiphytic lineages of bryophytes; how-

ever, early Eocene fossils of bryophytes are rare. Here, we present evidence for lejeuneoid

liverworts and pleurocarpous mosses in Cambay amber. The preserved morphology of the

moss fossil is inconclusive for a detailed taxonomic treatment. The liverwort fossil is, however,

distinctive; its zig-zagged stems, suberect complicate-bilobed leaves, large leaf lobules, and

small, deeply bifid underleaves suggest a member of Lejeuneaceae subtribe Lejeuneinae

(Harpalejeunea, Lejeunea,Microlejeunea). We tested alternative classification possibilities by

conducting divergence time estimates based on DNA sequence variation of Lejeuneinae

using the age of the fossil for corresponding age constraints. Consideration of the fossil as a

stem group member ofMicrolejeunea or Lejeunea resulted in an Eocene to Late Cretaceous

age of the Lejeuneinae crown group. This reconstruction is in good accordance with pub-

lished divergence time estimates generated without the newly presented fossil evidence. Bal-

ancing available evidence, we describe the liverwort fossil as the extinct species

Microlejeunea nyiahae, representing the oldest crown group fossil of Lejeuneaceae.

Introduction
Bryophytes (liverworts, mosses and hornworts) likely played a major role in the early Paleozoic
colonization of terrestrial ecosystems by plants [1–3]. However, reconstruction of the early
evolution of plants on land is hampered by the meagre fossil record [4–5] as well as deviating
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hypotheses on the relationships of the main land plant lineages [6–7] and their time of origin
[8–10].

Traditionally, bryophytes have been considered as “unchanging, unmoving sphinxes of the
past” [11] whose ranges were largely shaped by vicariance and extinction events [12–13]. Fol-
lowing this assumption some extant species were considered to be Jurassic in age [14]. This
view was recently challenged by molecular phylogenetic evidence indicating Cretaceous or
Cenozoic ages of many extant bryophyte genera [15–20] and diversification rate estimates for
the most recently derived lineages that are comparable to those of angiosperms [21]. Neverthe-
less, estimated ages for some nodes in the different studies vary considerably under influence
of assumed maximum ages of lineages, standard mutation rates, and deviating methods of
node calibration [17,20,22–26]. To resolve robust divergence time estimates and better under-
stand bryophyte evolution we need to improve our knowledge of the fossil record and explore
promising new fossil deposits.

Paleozoic and early Mesozoic bryophyte fossils are scarce [15,27–28] and the evaluation of
these early fossils is difficult since only a few late Mesozoic fossils are preserved in cellular
detail. Thus, their classification usually causes great difficulties. Diettertia montanensis, for
example, was initially described as a moss but subsequently treated as a jungermannealean liv-
erwort [29]. Many Cenozoic mosses and leafy liverworts are exquisitely preserved as amber
inclusions [30–31]. Amber, fossilized tree resin of gymnosperms and angiosperms, is well
known for its numerous botanical, zoological and fungal inclusions. Although the morphology
of bryophyte amber fossils usually closely resembles that of extant genera, the extent of mor-
phological information that can be collected from fossils rarely compares to that obtainable
from extant species. Accordingly, their taxonomic interpretation is a challenging task and sub-
ject to a certain degree of uncertainty [32].

Leafy liverworts are split into two main lineages: the generalist Jungermanniales and the
largely epiphytic Porellales [33]. Porellales’ habitat preference make them prime candidates for
becoming encased in resin flows; indeed most amber fossils of liverworts belong to this order.
Their largest family is the Lejeuneaceae, representing a derived lineage with more than 1,000
extant species in some 70 currently accepted genera, with a center of diversity in the humid trop-
ics [34–36]. Numerous Lejeuneaceae fossils have been found in Miocene Dominican and Mexi-
can amber, in addition to several inclusions in Paleogene Baltic, Bitterfeld and Rovno amber [31].

Mosses include a speciose derived lineage characterized by its predominantly creeping or
pendant growth, tapered “prosenchymatous” leaf cells and sporophytes on short lateral
branches. Like Porellales, they include numerous epiphytes and are frequently embedded in
amber, yet many fossils do not show the character states necessary for a reliable identification
[30,37].

Only recently, early Eocene (Ypresian) Cambay amber [38] was discovered and determined
to be a promising fossil deposit. This Indian amber has already yielded numerous zoological
inclusions as well as inclusions of fungi and remains of the resin-producing Dipterocarpaceae
[39–44]. Here, we present the first bryophytes from Indian amber. We discuss the taxonomic
relationships of a lejeuneoid liverwort using both morphological evidence and divergence time
estimates based on molecular evidence. We describe the extinct speciesMicrolejeunea nyiahae,
and also a pleurocarpous moss with unclear taxonomic relationships.

Material and Methods

Amber fossils
Amber piece AMNH-Tad-441-A was found in the Tadkeshwar Lignite Mine of Gujarat State,
western India (N 21° 21.400, E 073° 04.532), which contains outcrops of early Eocene

Bryophytes from Indian Amber

PLOS ONE | DOI:10.1371/journal.pone.0156301 May 31, 2016 2 / 15

Funding: This work was supported by the German
Research Foundation (grant HE 3584/6 to JH) and
the Alexander von Humboldt Foundation (research
fellowship to GEL): The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript. It also
received support from the Open Access Grant
Program of the German Research Foundation (DFG)
and the Open Access Publication Fund of the
University of Göttingen: The publication fee in an
open access publication will be covered by the
funders.

Competing Interests: The authors have declared
that no competing interests exist.



(Ypresian, 52 million year-old [45]) shallow marine sediments. This amber originates from
trees of the Dipterocarpaceae that grew in a fully tropical environment [40]. After an initial
inspection of the inclusions, followed by preliminary polishing of amber surfaces, the specimen
was embedded in a high-grade epoxy resin [EPO-TEK 301–2, Epoxy Technology Inc., mixing
ratio 100 (resin): 35 (hardener) by weight] in a procedure modified from the protocols
described by Nascimbene and Silverstein [46]. After curing, the sample was trimmed and pol-
ished on opposite sides using a series of wet silicon carbide abrasive papers (Struers, Germany)
with decreasing grit sizes [grit from FEPA P 600–4000 (25.8 μm to 5 μm particle size)]. The
piece of amber is currently housed in the amber collection of the Division of Invertebrate Zool-
ogy of the American Museum of Natural History (AMNH), New York, USA. It will ultimately
be deposited in the amber collection of the Birbal Sahni Institute of Palaeobotany, Lucknow,
India. The specimen is at all times publicly deposited and accessible.

The specimen was studied using a dissection microscope (Carl Zeiss Stemi 2000) and a com-
pound microscope (Carl Zeiss AxioScope A1), equipped with Canon 60D digital cameras. In
some instances, incident and transmitted light were used simultaneously. The images of Figs 1
and 2 are digitally stacked photomicrographic composites of 10 to 45 individual focal planes
obtained using the software package HeliconFocus 6.5. Several fragments of a leafy liverwort
matching the morphology of Lejeuneaceae subtribe Lejeuneinae, as well as a branch of a moss,
two dipterans and a springtail are enclosed in this amber piece. The taxonomic treatment of
the bryophyte inclusions is based on literature data on fossil and extant bryophytes, and on
comparisons with herbarium specimens housed at the herbarium Eger (EGR), the Göttingen

Fig 1. Cambay amber specimen AMNH-Tad-441-A. (A) Overview showing liverwort and moss inclusions as well as two dipterans. The arrowhead
points to the holotype ofMicrolejeunea nyiahae. (B) Pleurocarpous moss. (C) Close-up showing upper portions of leaves of the moss inclusion. The
prosenchymatous cells are well visible. Scale bars 1 mm (A) and 100 μm (B,C).

doi:10.1371/journal.pone.0156301.g001
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University Herbarium (GOET), the Bavarian State Collection of Botany (M), the Swedish
Museum of Natural History in Stockholm (S), the Herbarium São Paulo (SP), and the Royal
Botanical Garden Sydney (NSW).

No permits were required for the described study, which complied with all relevant regulations.

Fig 2. Microlejeunea nyiahae sp. nov. (AMNH-Tad-441-A) from Eocene Cambay amber. (A-F) Gametophytes; (G) Portion of the shoot depicted
in (B); the arrowhead points to the underleaf that is enlarged in (H). (H, I) Deeply bifid underleaves (encircled). The gametophyte fragment shown in
B and G represents the holotype. Scale bars 50 μm (A-G) and 10 μm (H,I).

doi:10.1371/journal.pone.0156301.g002
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Divergence time estimates
The morphology of the liverwort fossil (see Results) suggests an affiliation toMicrolejeunea or
the extant Lejeunea exilis [47–48] of Lejeuneaceae subtribe Lejeuneinae. This subtribe com-
prises the genera Harpalejeunea,Microlejeunea and Lejeunea [36,49–50]. In earlier studies, the
Lejeuneinae crown group was estimated to have an Oligocene [51] or Paleocene age [18]. We
tested various possible taxonomic treatments of the liverwort by conducting divergence time
estimates based on a DNA sequence alignment of Lejeuneinae using the age of the liverwort
fossil for corresponding age constraints. The resulting phylogenetic chronograms were com-
pared with the published divergence time estimates generated without the newly presented fos-
sil evidence. We assembled a three marker alignment of Lejeuneinae (nrITS, cp rbcL and trnL-
trnF) based on the comprehensive sampling of Heinrichs et al. [52] using one accession per
species and favoring accessions for which all three markers were available. Accessions of Lepi-
dolejeunea were chosen as outgroup based on the phylogenetic hypotheses of Wilson et al. and
Bechteler et al. [34,36]. Based on our current understanding of global species diversity, we sam-
pledHarpalejeunea, Lejeunea, andMicrolejeunea proportionally to represent about 10% of the
extant species diversity. To arrive at a balanced sampling, we used not only GenBank sequences
but sequenced additional accessions ofHarpalejeunea andMicrolejeunea using the protocols
and sequencing facilities described in [36] (S1 Table).

Dating relied on the BEAST package 1.8.2 [53] and the TIM3+Γ+I substitution model for
the ITS partition, the TVM+Γ substitution model for trnL-F, and GTR+Γ+I for rbcL as selected
by JMODELTEST under the AIC criterion [54–55], with four gamma categories. All parameters
were estimated in BEAST. The tree prior was a pure birth (Yule) tree and MCMC was run for
50 million generations, sampling every 5,000 generations. Convergence was determined by
examining the log files in TRACER 1.6. ESS values> 200 indicated that the parameter space had
been sampled sufficiently for valid parameter estimation. To find the appropriate clock model,
a likelihood ratio test [56] was carried out in PAUP� 4.0a146 [57]. A strict clock was rejected
(�P< 0.05), and thus an uncorrelated lognormal relaxed clock model was employed [58]. Five
different divergence time estimates were conducted using the 52 million-year-old Lejeuneinae
amber fossil for different age constraints, and using a normal distribution prior with a standard
deviation of 5 Ma. The fossil was assigned either toMicrolejeunea or to Lejeunea, first as most
recent common ancestor, and secondly using the “include stem” option. Lastly, the fossil was
assigned to the branch of the extant Lejeunea exilis.

Nomenclature
The electronic version of this article in a Portable Document Format (PDF) in a work with an
ISSN or ISBN will represent a published work according to the International Code of Nomencla-
ture for algae, fungi, and plants, and hence the new names contained in the electronic publication
of a PLOS ONE article are effectively published under that Code from the electronic edition
alone, so there is no longer any need to provide printed copies. The online version of this work is
archived and available from the following digital repositories: PubMed Central, LOCKS.

Results

Gametophyte fragments of a Lejeuneaceae representative
Microlejeunea nyiahae Heinrichs, G.E.Lee, Schäf.-Verw. & A.R.Schmidt, sp. nov. (Figs 2 and 3)

Holotype. American Museum of Natural History, AMNH-Tad-441-A, Fig 2B and 2G
show the gametophyte fragment representing the holotype; its location in the amber piece is
indicated by the arrowhead in Fig 1A.
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Fig 3. Reconstruction ofMicrolejeunea nyiahae based on the holotype and accompanying gametophytes.
(A-F) Portions of sterile shoots in ventral view. (G-H) Portion of stem with a leaf in ventral view showing the large
leaf lobule (dotted cells) and the lobe. (I) Median leaf lobe cells in top view. (J, L) Portion of shoot in ventral view
with deeply bifid underleaf. (K) Free margin of leaf lobule showing hyaline papilla cell (gray) next to apical lobule
tooth.

doi:10.1371/journal.pone.0156301.g003
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Etymology. The specific epithet honors Nyiah Goff (Coatesville, Indiana) who discovered
the bryophyte fossils described in this study.

Description. Plants sterile, 0.2–0.3 mmwide, irregularly and infrequently branched, lateral
branches spreading and usually few, 0.25–1.50 mm in length. Stem straight to shallowly zig-
zagged, 24–30 μm in diameter, with a 2-cells wide ventral merophyte. Leaves incubous, plane
and distant, sometimes contiguous. Leaf lobes 0.15–0.20 mm long, 0.06–0.10 mmwide, ovate-
oblong to triangularly ovate; leaf apex broadly rounded, rarely subtruncate, flat; leaf margins
entire; ventral margin forming an angle of 150°-180° with keel; free dorsal margin hardly more
than reaching stem. Leaf cells rather uniform, pentagonal to hexagonal, irregularly quadrate to
rectangular towards leaf margin; apical cells 18–20 μm long and 15–17 μmwide, median and
basal cells 18–25 μm long and 15–20 μmwide; cell walls hyaline, with small or indistinct trigones
and without intermediate thickenings; cell surfaces smooth. Leaf lobules sometimes reduced at
the base of stem or branches and at apex of shoots, 0.10–0.15 mm long, ca. 0.10 mmwide, to 1/2-
2/3 length of lobe, at an angle of 60°-80° to stem, ovate to suboblong, inflated along keel; apex
obliquely truncate; keel curved, crenate; free margin incurved; first lobule tooth often collapsed,
15–17 μm long, oblong, sometimes deflexed, apex obtuse; large disc cell (cell below the first
tooth) present, 20–22 μm long and 10–12 μmwide, hyaline papilla inserted on lobule margin at
base of first tooth. Underleaves small, 0.04–0.06 mm long, 0.04–0.05 mmwide, to 1.5 times wider
than stem, distant, ovate; bilobed, lobes 1/2-2/3 of underleaf length, about 2 cells wide, oblong to
lanceolate, distant; sinus narrow to broad, acute, V-shaped; tips acute to obtuse; underleaf margin
entire; base ± cuneate, insertion line straight. Rhizoids not seen.

Gametophyte fragment of a pleurocarpous moss
Sterile branch with ventral leaves more or less erect (Fig 1B and 1C), dorsal leaves from patent
base curved forward. Leaves narrowly ovate or lanceolate, 0.90–1.00 mm long (width not possi-
ble to measure accurately), gradually narrowed upwards to an acuminate apex, concave, with
channelled to semi-tubular acumen; costa lacking or not visible; margin plane, entire or almost
so. Median lamina cells linear, 4.5–6.0 μm wide, ca. 75 μm long, thin-walled. Differentiated alar
cells obviously present.

Divergence time estimates
The results of the divergence time estimates are presented in Table 1. Assignment of the lejeu-
neoid fossil to the Lejeunea exilis node leads to an Early Cretaceous to Middle Triassic age
reconstruction of the Lejeuneinae crown group [170 Ma, confidence interval 101–239 Ma].
Assignments to the Lejeunea stem lineage or to theMicrolejeunea stem lineage (Fig 4) yield an
Eocene to Late Cretaceous age of this crown group [Lejeunea assignment: 57 Ma, confidence
interval 39–74 Ma;Microlejeunea assignment: 63 Ma, confidence interval 45–78 Ma].

Table 1. Results from the different divergence time estimates of Lejeuneinae. Age estimates are given as mean plus 95% confidence interval.

Fossil calibration node Node age [95% HPD interval]

Microlejeunea-Lejeunea-Harpalejeunea Microlejeunea-Lejeunea Microlejeunea Lejeunea

Lejeunea exilis 169.55 [100.9;238.62] 161.81 [114.03;204.05] 110.07 [57.83;156.18] 133.26 [91.38;170.70]

Lejeunea 65.84 [45.89;88.74] 62.31 [48.05;74.00] 42.8 [26.73;48.2] 52.21 [42.1;60.12]

Lejeunea stem 56.86 [39.17;74.23] 52.21 [42.08;59.55] 37.05 [21.4;48.28] 45.13 [33.66;54.21]

Microlejeunea 79.80 [54.28;101.41] 70 [52.61;82.9] 53.64 [41.72;60.5] 62.19 [41.63;79.82]

Microlejeunea stem 62.69 [45.09;78.45] 54.32 [44.07;61.68] 42.49 [29.36;52.72] 48.97 [34.65;63.84]

doi:10.1371/journal.pone.0156301.t001
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Fig 4. Phylogenetic chronogram for Lejeuneaceae subtribe Lejeuneinae considering the fossil as a
stem lineage element ofMicrolejeunea. Time scale shown in million years to present (Pl to Ho = Pliocene to
Holocene). Confidence age estimates shown as horizontal bars. Vertical bar indicates time interval for Cambay
amber. Amber from the Tadkeshwar Lignite Mine has an age of 52 Ma.

doi:10.1371/journal.pone.0156301.g004
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Discussion

Liverwort inclusions
Liverworts of the family Lejeuneaceae are very abundant in the humid tropics, making up a
large part of the local epiphytic liverwort diversity [34,59]. With some 1,000 to 1,500 species in
about 70 genera, they are the largest family of liverworts [35–36,60–63]. They are not only
common in contemporary tropical rain forests but also have a comprehensive fossil record
[31,64]. The oldest putative Lejeuneaceae fossil is the poorly preserved Middle Jurassic com-
pression fossil Sinolejeunea yimaensis [65]. Although its position in Lejeuneaceae is weakly
supported considering the presented evidence; it is in accordance with the recently inferred late
Triassic origin of Lejeuneaceae by Feldberg et al. [18], who did not use this fossil as an age con-
straint. Previously identified Lejeuneaceae fossils occur in Paleogene Baltic, Bitterfeld, and
Rovno amber as well as in Miocene Dominican and Mexican amber [31]. Although their
generic placement is sometimes subject to controversy [66–67], there is not much doubt about
their affiliation to crown group clades of Lejeuneaceae [51]. Identification of the precise age of
the Paleogene fossils is, however, sometimes problematic. The Eocene sediments that yield the
majority of Baltic amber are 35–47 million years old, but some amber is also found in up to 50
million-year-old strata [68–69]. Ukrainian Rovno amber is considered to have roughly the
same age as Baltic amber [70–71] but detailed information is not yet available. Bitterfeld amber
originates from the open brown coal pit Goitzsche near the city of Bitterfeld in central Ger-
many. The amber-bearing sediment is uppermost Oligocene (24 Ma) in age [72–73] but some
authors suggest that Bitterfeld amber has been re-deposited and that it is contemporaneous
with Baltic amber [74]. In contrast, the proposed early Eocene (50–52 Ma) age of Indian Cam-
bay amber [40] is much more precisely and reliably established; thus, its biological inclusions
are better suited to calibrate phylogenetic trees. Cambay amber originates from the warmest
period of the Eocene, which is also well known for the occurrence of early angiosperm-domi-
nated megathermal forests [75–76]. Indeed, Cambay amber was produced by trees of the
angiosperm family Dipterocarpaceae, which are common in extant tropical lowland rain for-
ests [39–41]. Cambay amber thus provides an opportunity to study epiphytic bryophytes from
early Eocene angiosperm forests, lineages that benefitted from the more humid microclimate
of these forests compared to Cretaceous gymnosperm forests [18,21,77–79].

Present-day Asian rainforests are rich in epiphytic Lejeuneaceae [80,81]; hence the occur-
rence of representatives of this family in Cambay amber is not unexpected. The liverwort inclu-
sions in the investigated amber piece share a consistent morphology and are thus considered to
belong to a single species (Figs 2 and 3). They comprise several delicate gametophytes with zig-
zagged stems, suberect leaves with large lobules and rounded lobes, unicellular first lobule
teeth, marginal hyaline papillae, small, deeply bifid underleaves with a V-shaped sinus and for-
ward-directed, acute lobes. This combination of character states indicates that the fossil
belongs to a representative of Lejeuneaceae subtribe Lejeuneinae, either being a member of
Microlejeunea or of Lejeunea.Harpalejeunea has underleaves with a wide, U-shaped sinus and
broadly rounded lobes, and acute to acuminate leaf lobes whose long axis is orientated perpen-
dicular to the stem [35–36,49–50].Microlejeunea has a more consistent morphology than
Lejeunea and can be separated by winged female bracts and the presence of ocelli in at least
some leaves [49]. Ocelli are specialized cells containing only a single large oil body [82]; how-
ever, oil bodies are usually not preserved in fossils. Since the ocelli ofMicrolejeunea have the
same size as the surrounding leaf cells, it is not possible to confirm their presence or absence in
the investigated fossil [see 64]. While female bracts are also not preserved, the forward pointed
leaves and the large leaf lobules of the sterile gametophytes fully match the morphology of
extantMicrolejeunea [83–85]. Representatives of Lejeunea usually have straight stems, more
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prominent leaf lobes and larger underleaves but several extant taxa resembleMicrolejeunea in
vegetative characters. Especially weak shoots and branches of the widespread Asian-Malesian
Lejeunea exilis resemble the fossil; however, well developed shoot systems of Lejeunea exilis
have elongate triangular, acute lobes [47–48]. Lejeunea exilis and other Palaeotropical species
of Lejeunea are placed in derived lineages in the most comprehensively sampled Lejeuneinae
phylogeny available to date [52]. Constraining the Lejeunea exilis clade of our phylogeny with
the fossil’s age yielded an Early Cretaceous or Jurassic age of Lejeunea (Table 1). Published
divergence time estimates suggest an Oligocene or Eocene origin of Lejeunea [18,51]; hence we
consider a relationship of the fossil to the extant Lejeunea exilis unlikely. Morphological simi-
larity between the fossil and L. exilis is probably the result of convergence. Evidence for mor-
phological convergence between fossil and extant species was strongly supported in a study of
Radula, another lineage within the Porellales [86]. The assumption of an early crown group or
stem group member ofMicrolejeunea leads to estimates of a Paleogene origin of Lejeunea and
Microlejeunea and is thus in better accordance with published chronograms. The relationships
of the three Lejeuneinae genera Lejeunea, Harpalejeunea andMicrolejeunea are not yet fully
resolved [49], but Lejeunea andMicrolejeunea form a sister relationship in our chronograms.
Alternative assignment ofMicrolejeunea nyiahae to the Lejeunea orMicrolejeunea lineage thus
results in largely similar divergence time estimates. Accordingly, our taxonomic decision does
not cause misleading divergence time estimates, even if the fossil belonged to Lejeunea rather
thanMicrolejeunea. A further argument in favor ofMicrolejeunea is the presence of Palaeotro-
pic accessions in early diverging lineages (Fig 4), whereas the early diverging lineages of Lejeu-
nea are Neotropical [52]. This hypothesis needs to be tested using an extended taxon sampling
since our current sampling includes only some 10% of the extant diversity. So far,Microlejeu-
nea and Lejeunea fossils have only been found in Miocene amber from the Dominican Repub-
lic [64,87]; the Miocene Mexican amber inclusion Lejeunea palaeomexicana has recently been
transferred to Ceratolejeunea [67].

Assumption of a stem group representative ofMicrolejeunea is in accordance with pub-
lished divergence time estimates that do not rely on the new fossil from Cambay amber; yet
our reconstruction (Fig 4) supports older [18] rather than younger [51] age estimates for Lejeu-
neaceae. The presented evidence leads to the conclusion that the genera of subtribe Lejeuneinae
were established in the Late Cretaceous or Paleogene. This scenario supports a crown group
diversification of Lejeuneaceae genera in Cenozoic, angiosperm-dominated forests [18,21].

Pleurocarpous moss
The linear, prosenchymatous cells of the second bryophyte species in the investigated piece of
amber are indicative of a pleurocarpous moss (Fig 1B and 1C), but the available morphological
information is inconclusive for a reliable classification at the level of family or below. Alar cells,
groups of differentiated cells in the basalmost regions of the leaf, are of prime importance for
the identification of supraspecific taxa of pleurocarps. The arrangement of the basal leaf cells
points to the presence of alar cell groups, but the alar cells themselves have been lost. Hence,
we abstain from a formal description while reporting the first moss in Cambay amber. Pleuro-
carpous mosses occur in many habitats and are abundant as epiphytes, especially in tropical
areas [88–89]. Divergence time estimates indicate their presence since the Cretaceous [90].

Perspectives
Indian Cambay amber is a promising deposit not only for zoological inclusions but also for
plant fossils. The early Eocene resin has preserved remains of Dipterocarpaceae forest ecosys-
tems from the Early Eocene Climatic Optimum (EECO). This period is possibly of prime
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importance for the establishment of epiphytic plant lineages [77–78,91]; hence Cambay fossils
have a significant impact on improving our knowledge of the evolution of angiosperm-domi-
nated tropical forest ecosystems and on the influence of the rise of angiosperms on epiphyte
diversity.
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