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Abstract: The purpose of this study was to develop the best model for forecasting Malaysia
load demand. In this study, a half-hourly electricity load demand of Malaysia for one year, from
September 01, 2005 until August 31, 2006 measured in Megawatt (MW) was used. The double-
seasonal ARIMA model was considered due to the existence of two seasonal cycles in the load data.
Analysis was done using SAS package. The best model was selected based on the mean absolute
percentage error (MAPE), autocorrelation function (ACF) and partial autocorrelation function
(PACF) plots. The ARIMA(0,1,1)(0,1,1)*(0,1,1)**¢ with in-sample MAPE of 0.9906% was the best
model. Comparing the one-step and k-step ahead out of sample forecasts performance, the MAPE
for the one-step ahead out-sample forecasts from any horizon were all less than 1% . It can be
concluded that the one-step ahead out-sample forecasts were more accurate. There was a reduction
in MAPE percentages for all lead time horizons considered, ranging 89% to 96%. Furthermore, a
time-series plot of out-samples of actual load data, k-step ahead and one-step ahead out-sample
forecasts showed that one-step ahead out-sample forecasts followed the actual load data more
closely than k-step ahead out-sample forecasts. The ACF and PACF plots must be considered in
proving the best model for load demand and one-step ahead out-sample forecasts in forecasting
load, especially in Malaysia load data.

KEYWORDS: Load forecasting, double seasonal ARIMA model, ACF and PACF plots, one-step
ahead forecasts and k-step ahead forecasts

Introduction term forecasts by Beccali et al. (2007), Cancelo
et al. (2008) and Darbellay and Slama (2000);
and very short-term forecasts by Taylor (2008)
and Taylor et al. (2006). Several forecasting
methods with varying degrees of success have
been implemented for load forecasting including
multiple linear regression (Amjady and Keynia,
2008; Mirasgedis et al., 2006), nonlinear
multivariable regression model (Al Rashidi
and El-Naggar, 2010; Tsekouras et al., 2007),
artificial neural network (Al-Saba and El-Amin,
1999; Ghiassi et al., 2006) and Box-Jenkins
ARIMA model (Al-Saba and El-Amin, 1999;
Ghiassi et al., 20006).

Load demand prediction is important for electric
power planning and must be assessed with the
greatest precision of any model. The utility
power company needs forecasts for different
time horizons in order to ensure uninterrupted
energy supply to customers (Tsekouras et
al., 2007). Load forecasting can be broadly
classified into four main categories which
are long-term forecasts, intermediate-term
forecasts, short-term forecasts and very short-
term forecasts. The four main categories of
time horizons have been studied extensively.
Long-term forecasts are investigated by Jia et

al. (2001), Kermanshashi and Iwamiya (2002)
and Carpinteiro et al. (2007); intermediate-term
forecasts by Amjady and Keynia (2008), Elkateb
et al. (1998) and Mirasgedis et al. (2006); short-
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The study investigates methods that are
appropriate for forecasting short-term Malaysia
load demand. Due to the presence of a double
seasonal pattern in load-demand data which are
daily and weekly seasonal, a double-seasonal
multiplicative ARIMA model is proposed. The
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multiplicative double-seasonal ARIMA model
has often been used for univariate forecasting
intraday-load time series (Cancelo at al., 2008;
Darbelly and Slama, 2000; Taylor, 2008; Taylor,
2006; Taylor et al., 2006). The double-seasonal
ARIMA with polynomial of order one has been
studied by Cancelo et al. (2008) and Darbelly
and Slama (2000). Taylor et al (2006) and
Taylor (2006) has utilised the double-seasonal
ARIMA with polynomials of order two and
order three. Taylor (2008) has also utilised
the double-seasonal ARIMA with polynomial
of order three and increased the order to five.
However, for the reason of parsimony he
deferred the consideration of higher-order
models. Basically, when one considers the order
of polynomial, for example if one considers the
polynomial of order , all lags from lag one to
lag are being included. However, by looking
at the sample autocorrelations and the partial
autocorrelations, there may exist insignificance
lags in between lags. It may also indicate the
existence of significance lags after lag where
those lags were not considered in the model
carlier. Therefore in this study focus is on the
subsets of a double-seasonal ARIMA model in
order to include all the significance lags in our
tentative model. It is hoped that one-step ahead
forecasts of short-term load demand in Malaysia
obtained from a double-seasonal ARIMA model
with improvement of forecasting accuracy will
be shown.

This article is an extension of our previous
work as reported in Mohamed et al. (2010a &
2010b). In those articles, a double-seasonal
ARIMA model was developed and it was shown
that it was appropriate to forecast short-term
load demand in Malaysia. In the current study,
further justification is given that our model is
the best model by using autocorrelation and
partial autocorrelation functions. This article
is organised as follows. First the Box-Jenkins
double-seasonal ARIMA model is presented.
This is followed by a discussion on the detail
results of the selected model. Our findings are
then concluded based on the selected forecasting
evaluation method for this study, which is the
MAPE.
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Box-Jenkins Double-Seasonal Arima Model

A double-seasonal multiplicative ARIMA model
is presented due to the presence of double-
seasonal patterns in short-term load demand data
which are daily seasonal and weekly seasonal.
The multiplicative double-seasonal ARIMA
model (Box et al., 2008) is:

¢p(B)CDp1(BS‘)l;Ip](BSZ)( Sl—B)d(l—Bs')D‘(l—BSZ)DZZ}
= 0,B)0¢ (B)¥o(B)a, (1

where Z, is a stationary load demand in period ¢;
B is a backward shift operator; ¢,(B) and 0,(B)
are regular autoregressive and moving-average
polynomials of orders p and g respectively ;
®,(B"), I,(B*), Oy (B") and ¥, (B”) are
autoregressive and moving-average polynomials
of orders P, P,, O, and Q, respectively; s, and
s, are the seasonal periods; d, D, and D, are the
orders of integration; ¢, is a white-noise process
with zero mean and constant variance. The
seasonal cycles, s, and s, are selected according
to the type of load data series. The daily and
weekly seasonality are denoted as s, and s,
respectively. Generally, for hourly load, s = 24
and s,= 168 (Taylor et al., 2006), for half-hourly
load, s, = 48 and s, = 336 (Darbelly and Slama,
2000; Taylor et al., 2006), while for minute-
by-minute load series, s, = 1440 and s,= 10080
(Taylor, 2008). The multiplicative double-
seasonal ARIMA model can be expressed as
ARIMA(p,d,q)(P,,D,,0)" (P,,D,,0)".

The modeling procedure of Box-Jenkins
double-seasonal ARIMA Model involves an
iterative five-stage process as follows:

(1) Preparationofdataincludingtransformations
and differencing

(i1) Identification of the potential models by
looking at the sample autocorrelations and
the partial autocorrelations

(ii1) Estimation of the unknown parameters by
some optimisation methods

(iv) Checking the adequacy of fitted model by
performing normal probability plot, ACF
and PACF on model residuals

(v) Forecast future outcomes based on the
known data.
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In this study, mean absolute percentage
error (MAPE) is considered as the standard
measurement to examine the accuracy of
the prediction model. This measure is most
commonly used in the literature to evaluate
forecasting performances. MAPE is defined as
(Dong and Pedrycz, 2008):

Nz, -2,
2z

where and are the actual values and the predicted
values respectively, while n is the number of
predicted values.

()

MAPE= x100

The data used is one year half-hourly load
demand measured in Megawatt (MW) from
September 01, 2005 to August 31, 2006. They
are gathered from Malaysian electricity utility
company, Tenaga Nasional Berhad (TNB),
Malaysia.

Results

The data was partitioned into two parts. The first
part from September 01, 2005 to July 31, 2006
was used for training and the second part from
August 01, 2006 to August 31, 2006 was used
for testing. Malaysia load data is non-stationary
data which is clearly shown in Figure 1. The
presence of seasonal patterns can clearly be seen
in the ACF’s and PACF’s plots in Figure 2 and
hence the data need to be differenced. After non-
seasonal differencing (d=1/) and daily seasonal
differencing (D, = 1, s = 48), the ACF and PACF
are plotted in Figure 3. The plot indicates the
presence of another seasonal pattern which is
weekly seasonality with length 336. Figure 4
shows load demand series after non-seasonal
differencing (d=1), daily seasonal differencing
(D,=1,5=48) and weekly seasonal differencing
(D,=1, s,= 336). It is clear from Figure 4 that
load demand series is a stationary series after
seasonal and non-seasonal differencing. The
ACF and PACF of the stationary load demand
series are plotted in Figures 5 and 6 respectively.

For the purpose of double-seasonal ARIMA
model analysis, a program in Statistical Analysis
System, SAS was written. The program had to
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be specially written since commands for such
analysis are not readily available in statistical
packages such as S-plus, MINITAB, MATLAB,
SPSS, as well as SAS itself. The integer values
p.q, P, P, O, and Q, are identified by looking
at the sample autocorrelations and the partial
autocorrelations of the differenced series. The
AR and MA coefficients in a double-seasonal
ARIMA are estimated by the least-squares
method. Finally, model validation is made
through performing ACF, PACF and normal
probability plot of the residuals to determine
whether the residuals are white noise and
normally distributed. The Akaike’s information
Criterion (AIC) and the Schwarz Bayesian
Criterion (SBC) are used for model selection
criteria. Three models are deemed appropriate
for the current data.

The first selected model is as follows:

ARIMA([1,2,3,5,11,16,17,18,19,20,23, 28,29,34,
38,46,471,1,1)(0,1,1)*(0,1,1)**

All the parameters are significant at alpha 0.1
significance level with white-noise residuals
based on Ljung-Box statistic until lag 48. This
model gives 10 extreme residual values. In
terms of the magnitude of the residuals, these
are at 11633th, 11632th, 6305th, 7265th, 304 1th,
2415th, 10721th, 12659th, 11680th and 11681th
observations. The model residual however does
not satisfy the Normal Distribution because of
the presence of outliers in the data. The AIC
and the SBC of this model are 194170.1 and
194330.9 respectively.

The second selected model is as follows:

ARIMA(0,1[1,2,3,5,11,16,17,18,19,20,21,22,24,
28,29,31,34,36,41,471)(0,1,1)* (0,1,1)*

In this model we also found that all the
parameters are significant at alpha 0.05
significance level with white-noise residuals
based on Ljung-Box Q" statistic until lag 48. This
model also gives 10 extreme residual values.
In terms of the magnitude of the residuals,
these are at 11633th, 11632th, 6305th, 7265th,
3041th, 7456th, 11651th, 2415th, 11681th
and 12659th observations. Similar to the first
model, this second model residual does not
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Figure 1: A half-hourly load from September 1, 2005 to July 31, 2006.
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Figure 2: The ACF and PACF of Z,.
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Figure 3: The ACF and PACF ontafter d=1, D=1,s= 48.
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Figure 4: Z after d=1, D,= 1, s =48, D,= 1 and s,= 336.
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Figure 5: The ACF of Z after d=1, D, =1, s =48, D,= 1 and s,= 336.
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PACF after d=1, Di=1, s1=48, D2=1, s2=336, of Z(t)
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Figure 6: The PACF of after d=1, D=1,5=48, D,=1 and s,= 336.

satisfy the Normal Distribution. The AIC and the
SBC of this model are 194259.2 and 194435.3
respectively.

The third selected model is as follows:
ARIMA(0,1,1)(0,1,1)*(0,1,1)%¢

For this model, all the parameters are significant
at alpha 0.05 significance level. However, based
on Ljung-Box Q" statistic, the residuals are not
white noise. This model also gives 10 extreme
residual values. In terms of the magnitude of the
residuals, these are at 11633th, 11632th, 6305th,
7265th, 2945th, 2963th, 2415th, 11652th,
11654th and 11651th observations. Similar to the
first and second models, the third model residual
does not satisfy the Normal Distribution. The
AIC and the SBC of this model are 195054 and
195077 respectively.

Discussion

From the PACF plot as illustrated in Figure 6,
there is a fixed pattern with three moving average
parameters which are (MAIL,1), (MA2,1) and
(MA3,1) that need to be included in our model.
The estimate values of the parameters of all
the three models are greater than 0.2, which

are highly significant at alpha less than 0.0001
significance level. For Model 1, although all the
parameters for autoregressive as listed in Table
1 are significant, the estimate values of these
parameters are less than +0.1 with exception
of (ARI1,1) and (ARI1,2). Similar to Model
2, all the parameters for moving average are
significant. However except for (MA1,2), the
estimate values of all these parameters are less
than £0.1. The in-sample MAPEs and the out-
sample MAPEs of four time horizons for these
three models are summarized in Table 1.

Despite the fact that the third model is the
simplest among all, it outperforms the first two
models. Based on the performances the concept
of parsimony is supported where the simplest
model is the best model. For the current study,
Model 3 can be expressed as follows:

(1-B)(1-B*)(1-B**)Z = (1 - 0.27184B)

(1-0.76592B8")(1-0.850198")a, (3)
Zt - Zt—l + ZH( Zt49+ thsssf Zt73377 Zt—384+

Z o +a—027184a —0.76592a, , +
0.20821a, ,,—0.85019a,,, .+ 0.23112a,,, +
0.65118a_ . —0.17702a 4)

384 +-385

Table 1: The MAPE of in-sample and out-sample forecasts of the three models.

Model 1 Model 2 Model 3
In-sample forecast 0.9680 0.9711 0.9906
Out-sample one-week forecast 10.1892 9.5818 8.8841
Out-sample two- week forecasts 15.8199 14.9531 13.9414
Out-sample three-weeks forecasts  21.6847 20.5402 19.1838
Out-sample one- month forecast 29.4448 27.8249 25.8641
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Autocorrelation Function and Partial
Autocorrelation Function

The autocorrelation function, ACF and partial
autocorrelation function, PACF plots are also
presented by using R package to support
our suggestion. Based on the third model,
ARIMA(0,1,1)(0,1,1)* (0,1,1)33¢ there are three
estimate parameters which are 6, = 0.27184,
0= 0.76592 and 0,, = 0.85019 where all of
these three estimate parameters are positive.
To investigate the patterns of ACF and PACF

graphically we propose eight combinations

Table 2: The combination of three estimates.

262

of these three estimates are proposed and the
results are presented in Table 2.

By looking at ACF and PACF plots for all
eight graphs; Figures 7, 8, 9, 10, 11, 12, 13 and
14, it was found that the Figure 7 where all
of three estimate parameters are positive gives
an exact pattern such as ACF and PACF of the
stationary load demand series, refer to Figures 5
and 6 . Hence, the ACF and PACF plots support
our suggestion that the third model is the best
model in this study.

Figure Combination MA(1)(1)*¥(1)*¢

Figure7 6, =0.27184, Z,=a,-027184a,_, -0.76592a, ,, +0.20821a,_,,
0,5 =0.76592.  _ 850194, ,,, +0.231124,_;, +0.65118a, 4, - 0.17702a,
0,5 = 0.85019.

Figure 8§, =0.27184, Z,=a,-0.27184a,_, - 0.76592a,_,, +0.20821a, _,,
6,5 =0.76592, +0.850194,_;, - 0.231124, 5, - 0.651184, 4, +0.17702a, 44
0., = -0.85019.

Figure 9 9, =0.27184, Z, =a,-0.27184q,_, +0.76592a,_,, - 0.20821a, _,,
0,5 =-0.76592,  _0.85019a,_,,, +0.23112a,_,,, - 0.65118a, ., +0.17702a,
0,5 = 0.85019.

Figure 10 9, =0.27184, Z, =a,-0.27184q,_, +0.76592a,_,, - 0.20821a,_,,
0,5 =-0.76592, 4 0.850194a, ., —0.23112a, ,,, +0.65118a, ., — 0.17702a,
0,5, = -0.85019.

Figure 11 9 =-0.27184, 7 =g, +0.27184q, , -0.76592a, ,, - 0.20821a, _,,
0,5 =0.76592, -0.85019q, ,, — 0231124, ,,, + 0.651184,_;, +0.17702a,
0, = 0.85019.

Figure 12 6 =-0.27184,  Z =g +0.27184a, , -0.76592a,_, - 0.20821a,_,,
0,5 =0.76592, +0.850194,_,,, +0.23112a,_,,, —0.65118a,_.;, —0.17702a, .,
0,5, = -0.85019.

Figure 13§ =-0.27184,  Z =g +0.27184a, , +0.76592a,_, +0.20821q,_,
0,5 =-0.76592,  -0.85019q,_,;, — 0.231124,_,;, — 0.65118a, ., —0.17702a, ..,
0,5 = 0.85019.

Figure 14 9 =-0.27184, 7 =g, +0.27184a, , +0.76592a, 4 +0.20821a,_,,
O3 ==0.76592,  10.85019q, 4, +0.23112a,_4;, +0.65118a,_q, +0.17702a,

0, = —0.85019 .
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Result of One-Step Ahead Out-Sample
Forecasts

A k-step ahead forecasting system will produce
forecasts for the next k periods ahead. For
example, k =4 means that the number of periods
ahead to be forecast is 4. However, the k-step
ahead out-sample forecasts accumulate the error
terms resulting in low accuracy in forecasting
performances. Therefore the out-sample forecasts
based on k-step ahead are highly influenced by
lead times as shown in Table 6. However, the
one-step ahead out-sample forecasts are not. The
results of one-step ahead out-sample forecasts
of ARIMA(0,1,1)(0,1,1)*(0,1,1)** model which
are presented in Table 6 clearly show that the
one-step ahead out-sample forecasts are not
influenced by the lead times. Out-samples of
actual load data, k-step ahead and one-step
ahead for Model 3 are illustrated in Figure 15.
It is evidenced from the figure that one-step

J. Sustain. Sci. Manage. Volume 6 (2) 2011: 257-266

ahead out-sample forecasts follow the actual
load data more closely than k-step ahead out-
sample forecasts.

Conclusion

The ACF and PACF plots were presented to
prove that the proposed model is the best model.
This was done by using eight combinations of
three estimates parameters in the best selected
model. Results showed that the ACF and
PACF plots with all three positive values of
estimate parameters gave the exact patterns
such as ACF and PACF of the stationary load
data. The best selected model also had three
estimate parameters with all positive values.
It was proven that the best selected model was
the best model for load data. Comparison was
also made between one-step ahead out-sample
forecasts and k-step ahead out-sample forecasts
using double seasonal ARIMA model. The one-
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Table 3: The MAPE of k-step and one-step ahead out-sample forecasts of model 3.

k-step ahead One-step ahead Reducing
out-sample forecasts  out-sample forecasts

Out-sample 8.8841 0.9467 89.3436%
one- week forecast
Out-sample 13.9414 0.9322 93.3132%
two-week forecasts
Out-sample 19.1838 0.9046 95.2845%
three-week forecasts
Out-sample 25.8641 0.9778 96.2195%

one month forecast
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8000

Z(t): Original data

6000
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- Actual
-- k-step ahead
-~ One-step ahead

4000

1 149 298 447 59

745 894 1043 1192 1341

Figure 15: The out-samples of actual data, k-step ahead
and one-step ahead out-sample forecasts.

step ahead out-sample forecasts were found to be
more accurate. There was a reduction in MAPE
percentages for all lead time horizons ranging
89% to 96%. Graphically, when out-samples of
actual load data, k-step ahead and one-step ahead
out-sample forecasts were plotted, the one-step
ahead out-sample forecasts followed the actual
load data more closely than the k-step ahead
for out-sample forecasts. Two conclusions were
therefore made: 1) the ACF and PACF plots
may be considered in proving the best model that
satisfies a time series data, where in the study
was the load demand, and 2) apart from k-step
ahead forecasts, the one-step ahead out-sample
forecasts must also be considered in forecasting
load, especially in Malaysia load data.
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