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Abstract: In this paper, we study an ecological model with a tritrophic food chain composed of
a classical Lotka-Volterra functional response for prey and predator, and a Michaelis-Menten-
type functional response for predator and top predator. There are two equilibrium points of the
system. In the parameter space, there are passages from instability to stability, which are called Hopf
bifurcation points. For the first equilibrium point, it is possible to find bifurcation points analytically
and to prove that the system has periodic solutions around these points. Furthermore the dynamical
behaviours of this model are investigated. The dynamical behaviour is found to be very sensitive to
parameter values as well as the parameters of the practical life. Computer simulations are carried
out to explain the analytical findings.
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Introduction predator converts captured prey into predator
births and a, is the constant rate at which death
occurs in the absence of prey. They showed
that ditrophic food chains (i.e. prey-predator
systems) permanently oscillate for any initial
condition if the prey growth rate is constant and

the predator functional response is linear.

The real interaction of prey-predator in nature
is complex and comprises both interspecies
and external environmental factors. Therefore,
several simplifications are usually assumed so
that a basic model can be constructed and then
developed or modified to approach the real
system. The term “ratio-dependent predation” is
introduced in Arditi and Ginzburg, (1989) to
describe situations in which the feeding rates of
predators depend on the ratio of the number of
preys to the number of predators rather than on

One of the simplest dynamical models to
describe the interaction between two interacting
species, namely one prey and one predator, is the
classical Lotka-Volterra equation (Chauvet et al.,

2002) which can be stated as

dx

E=a1x—blxy

‘ (1
D_ a4 y+b,xy

dl 2 2

where x is a prey, y is a predator, the predator
y preys on x, a, is the prey growth rate in the
absence of the predators, b, is the capture rate of
prey by per predator, b, is the rate at which each
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prey density alone, as is the case in most classical
models. One advantage of the ratio dependence
is that they prevent paradoxes of enrichment and
biological control predicted by classical models
(Arditi and Saiah, 1992; Gakkar and Naji, 2003).

Experimental observations (Ginzburg and
Akgakaya, 1992) suggest that prey-dependent
models are appropriate in homogeneous
situations and ratio-dependent models are good
in heterogeneous cases. Many investigators
(Ginzburg and Akgakaya, 1992; McCarthy et al.,
1995) have also concluded that natural systems
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are closer to the models with ratio dependence
than to the ones with prey-density dependence
(Jost et al., 1999).

Almost each of the food-chain models
considered in ecological literature are
constructed by invoking same type of functional
responses for (x, y) and (y, z) populations
(Mamat et al., 2011). But a different selection
of functional response would be perhaps more
realistic in this context. In 2011, a mathematical
model of three species model by mixed Lotka-
Volterra and Holling Type-II functional response
was proposed (Mada Sanjaya et al., 2011).
From this point of view, in this paper, a classical
(nonlogistic) Lotka-Volterra functional response
for the species x and y and a Michaelis-Menten
type functional response for the species y and z
is considered (Kara and Can, 2006; Hsu ef al.,
2001; Hsu et al., 2003; Abrams, 1994; Abrams
and Ginzburg, 2000; Beretta and Kuang, 1998).

Model System

The classical food-chain models with only
two trophic levels are shown to be insufficient
to produce realistic dynamics (Freedman and
Waltman, 1977; Hastings and Powell, 1991;
Hastings and Klebanoff, 1993; Dubey and
Upadhyay, 2004; Mada Sanjaya et al., 2011).
Therefore, in this paper, by modifying and
composing the classical Lotka-Volterra and
Michaelis-Menten type functional response
model the dynamics of a three-species food-
chain interaction are analysed and simulated.
With non-dimensionalisation, the system of
three-species food chain can be written as

dx

E=(a1_b1J’)x

dy ¢z

E=( az"'bzx_y;z)y> 2)
£=(— L+ i34 )z

dt y+z

where x, y, and z denoted the non-dimensional
population density of the prey, predator, and top
predator respectively. The predator y preys on x
and the top predator z preys on y. Furthermore
a, a, a, b, , b, c, and c, are prey intrinsic
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growth rate, predator’s death rates, top predators
death rates, predation rate of the predator, the
conversion rate, the maximal growth rate of
the predator, and conversion-factor constant
respectively.

Equilibrium Point Analysis

According to Ginoux (2009), May (2001), Mada
Sanjaya et al. (2011) and Mamat et al. (2011), the
equilibrium points of (2) denoted by E(x,7,7),
are the zeros of its nonlinear algebraic system
which can be written as

(al _bl)’)x=0

(—az +byx - 3)

¢z )y=0>
y+z

(—a3+ 24 )z=0
y+z

By considering the positivity of the parameters
and the unknowns, there are two positive
equilibrium given by £, (x,, y,,0) with

x,=a,/b,andy =a,/b,,
and £, (x,, y,,z,) with

a,c, —a,c, —cc a
SEGTHG TG g /b, and z, = -

x -
2
byc,

where
a,c,tc,c,>a,c, and c,>a,

Stability of Equilibrium Points

The dynamical behaviour of equilibrium points
is studied by computing the eigenvalues of the
Jacobian matrix J of system (2) where

a -by -bx 0
= —2
_ _ _ ¢z oy
J(x,y,2)=| by -a, +b,x- ! - -z
y+z +z (4)
CzZZ(y Z)Z (y 2)_2
0 G+2) —a
y+7) »+2)

Atmost, there exists two positive equilibrium
points for system (2). The existence and local
stability conditions of these equilibrium points
are as follows.
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1. The Jacobian matrix (4) at the equilibrium The characteristic equation of the Jacobian matrix

point £, (x,,y,,0), is (@) of E, (x,,y,2,)is I*+o A+ 0l+0,=0where
o _ba o, - lerma ) —c)
b, <
b,a _
J(x,,¥,,0)= % 0 -¢ (5) o, = "1(‘1262 +66 ‘31‘13) | (6)
1 C
0 0 —a; +c
} : o. = (62 —a; Xazcz TCC — G )IlaB
3= 2
¢

The eigenvalues of the Jacobian matrix (5) According to the Routh—Hurwitz criterion
are A, ,= +/-aa, ,and ;= ¢, —a,. Hence, (Ginoux, 2009; May, 2001; Mada Sanjaya et al.,

the eduilibrium point £, is a locally-stable 2011; Mamat et al., 2011), E, (x,, y,z,) is locally
spiral sink if ¢, < a, and E, is a locally- and asymptotically stable if one sets

. NS
unstable spiral source if ¢, > a,. 6,>0,0,>0,and 6,0,> 0, 7

2. Suppose that the Jacobian matrix (4) is denoted

then
by J=(a,),,, By substitution £, (x,, y,,z,) into
4), we héve ¢,>a,c,=>c), and €6, + €€~ asc,. (8)
a, =0,

b ( ) Hopf Bifurcation Point
G = 0,6 — 66

= bye, ’ When attempting to study periodic or quasi-
_0 periodic behaviour of a dynamical system, the
=5 Hopf bifurcation point needs to be considered.
0 = % The dynamical system generally (Ginoux, 2009;
U b, May, 2001; Kara and Can, 2006, Mada Sanjaya
 aa-ag-ce caX(a,-c,} et al., 2011) can be written as
Iy =4 c 22 v =F(v,u) 9)
2 20 ﬂ_‘ﬁ(as'cz)
3% b, a,b, where
. ¢’ v =y2),=(a,a,a,b,b,c,c) (10)
N
b? ﬁ_M According to Ginoux (2009), May (2001), and
b, ash, Kara and Can (2006) for the system (2) which
a, =0, can be written in the form (9-10), if an ordered
) o (aa ) Cz)z pair (v, ) satisfied the conditions
" wala ala —6)2, (D) £ ) =0,
1 1\"3 2
asb ( b - ah, ] (2) J(v,u) has two complex conjugate
eigenvalues A, = a(v,i) £ ib(v,u),
and 1.2
) around (v, 4,),
o4
Ay =—0; + 2—(1)2 (3) a(vo, :uo) = 07 Va(vo, lu()) # O) b(VO, ILtO) # 0: and
blz(zll - a‘tj;l;]cz] (4) The third eigenvalues 4,(v,, 1) # 0,

then (v, u,) is called a Hopf bifurcation point.

For the system (2), two equilibrium points £, (x,,
v,,0) and E, (x,, y,,z,), satisfy the condition , and
for the equilibrium point £, (x,, y,,0), there are
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two complex conjugate eigenvalues for which
the real part of the eigenvalues are zero.

The last conditionis 4,(v,, u,) # 0 satisfied if

czqﬁ a,.

(11
The equation (7), (8) and (11), are satisfied if a,
is chosen not as

6130: C,.

(12)

Hence, E, is stable spiral and £, is unstable
spiral for a,< a,, E, and £, is centre point for a,
= a,, and £, is stable spiral and £, is unstable
spiral for a,> a,. The point (v,, ) which
corresponds to a, = a,,, is a Hopf bifurcation
point. This Hopf bifurcation states sufficient
condition for the existence of periodic solutions.
As one parameter is varied, the dynamics of the
system change from a stable spiral to a centre to
an unstable spiral (Table 1).

Numerical Simulation

Analytical studies always remain incomplete
without numerical verification of the results. In
this section a numerical simulation to illustrate
the results obtained in previous sections are
presented. The numerical simulation was
implemented in MATLAB R2010a. The
numerical experiments are designed to show the
dynamical behaviour of the system in four main
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different sets of parameters: 1. The case a,< a,.
IL. The case a,= a,,. I11. The case a,> a, . IV. The
chaotic attractor in equilibrium. The coordinates
of equilibrium points and the corresponding
eigenvalues can be found in Table1. For showing
the dynamics of the system (2) change, the
parameter set {a, a, b, b,, c, c,}=10.5,0.5,
0.5, 0.5, 0.6, 0.75} given as a fixed parameters,
and a, as a varied parameters. The calculation
for the parameter set given Hopf bifurcation
point a,; = ¢, = 0.75 as a control parameter, is
equal to analysis result (12).

I.  Thecasea,<a,

For the case a, < a,, E, is stable, E is
unstable as in previous sections. For the case
a, < a,, (Table 1) of the two eigenvalues,
E, is pure imaginary with initially-spiral
stability corresponding with centre manifold
in xy plane and one positive real eigenvalue
corresponding with unstable one-dimensional
invariant curve in z axes and different
condition in £, that has two eigenvalues
with  complex-conjugate initially-spiral
stability and one negative real eigenvalue
corresponding with stable one-dimensional
invariant curve. Hence the equilibrium point
E, is a locally-stable spiral sink and E| is a

locally-unstable spiral source.

Table 1. Numerical Analysis of Stability Equilibrium Point

The Parameter  Equilibrium point Eigenvalues Stability
Case E1 E2 E2 El E2
a;<ay, a;=0.002 1,1,0 2.196, 1.000, +0.500 1, 0.00079 = Unstable  Stable
374.000 0.748 0.74108 i, spiral spiral
-0.00199
a;=001 1,1,0 2.184,1.000, +0.500i, 0.00394=%0.7389 Unstable Stable
74.000 0.740 61, spiral spiral
-0.00986
a;=005 1,1,0 2.120,1.000, +0.500i, 0.01859+0.7289 Unstable Stable
14.000 0.700 61, spiral spiral
-0.04651
Chaos a3=0.05, 1,1,0 2.176,1.000, +0.500i, 0.00585=%0.7379 Unstable Stable
=25 49.000 2.450 21, spiral spiral
-0.04894
a;=a, a3;=0.75 1,1,0 1.000,1.000, + 0.5001, + 0.50000 i, Limit Limit
0 0 cycle cycle
ay>a;,  a3=1 1,1,0 0.600,1.000, =+0.5001, - Stable Unstable
-0.250 -0.250 0.09336 = 0.4342  spiral spiral
81, 0.25339
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Figure 1: The solution for a, < a,.

(b) Time series for a,=0.75

(a) Phase space for a, = 0.75

Figure 2: The solution for a, = a,.
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(a) Phase space for a, =1

Figure 3: The solution for a,> a, .
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(c) y-z phase plane
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Figure 4: The chaotic solution for ¢,> a, and ¢,> ¢/, different colour for

different initial condition.

As shown in Figure 1, the top predator z can 1I.
survive, growing periodically unstable. On

the other hand, prey x and predator y persist

and have populations that vary periodically
over time with a common period.
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The case a,=a,,

For the case a,= a,, the system just has one
E, equilibrium point and £, disappears. The
equilibrium E, has three eigenvalues with
zero real-part corresponding with stable
centre point in xy plane (see Table 1). In this
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case, top predators die. On the other hand,
prey and predator growth increase over time
as shown in Figure 2.

M. The case a,> a,,

For the case a, > a,, equilibrium point
E, is stable, £, is unstable as in previous
sections. For the case  (Table 1) of the
two eigenvalues, E, is pure imaginary with
initially-spiral stability corresponding with
centre manifold in xy plane and one negative
real-part eigenvalue corresponding with
stable one-dimensional invariant curve in z
axes and in different condition in £, that has
two eigenvalues, with complex conjugate
initially-spiral stability and one positive real-
part eigenvalue corresponding with unstable
one-dimensional invariant curve. Hence the
equilibrium point £, is a locally-stable spiral
sink and £, is a locally-unstable spiral source.

In this case, top predators die. On the other
hand, prey x and predator y persist and has
populations that vary periodically over time
with a common period. The plot of the
solution in Figure 3 exhibits this behaviour.

IV. Chaotic attractor in equilibrium point

For the parameter set: {a,, a,, a,, b, b,, ¢,
c,}= 1 05, 0.5, 0.05, 0.5, 0.5, 0.6, 2.5}
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chaotic attractors occur if a, < a,, for this
parameters, with a, = ¢, = 2.5 (12). The
coordinates of equilibrium points and the
corresponding eigenvalues can be found in
Tablel. The chaotics behaviour is sensitive
to the changes in the parameter set and in the
initial conditions as shown in Figure 4.

Now it shall be proven that the strange
attractor shown in Figure 4, is actually chaotic
in nature. For this all the Lyapunov exponents
(Wolf et al., 1985) associated with the strange
attractor shown in Figure 4 shall first be
calculated. The spectrum of Lyapunov exponent
is shown in Figure 5. One can see that the largest
Lyapunov exponent thus calculated is positive,
showing that the strange attractor is chaotic in
nature.

The dynamics of this model system depend
on values of system parameters. Beyond a critical
value of a crucial parameter, the system displays a
peculiar behaviour, whose sensitively depends on
initial condition. This is known as “deterministic
chaos”. The system trajectories meander aimlessly
on a bounded phase space. The characteristic
feature of this meandering is that initially close
trajectories diverge exponentially from each
other as time progresses.

Persistence of top species z in (2) depends
on the parameters a,, a,, ¢, and c,. In particular,

Dynamics of Lyapunov exponents
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Figure 5. The spectrum of Lyapunov exponent calculated for the
strange attractor shown in Figure 4.
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if , then species z dies out, while if , then species
z survives. On the other hand, species prey x and
middle predator y can persist for all conditions.

Conclusions

In this paper, the dynamical behaviours of a three-
species food-chain model have been studied. As
usual, a Lotka-Volterra functional response is
taken to represent the interaction between prey
and predator. The interaction between predator
and top predator is assumed to be governed by
a Michaelis-Menten functional response. Such
different choices of functional responses may
be particularly useful for plant-pest-predator
interactions. Mathematical models of food
chains are analysed and possible dynamical
behaviour of this system is investigated at
equilibrium points. In the parameter space, there
are passages from instability to stability, which
are called Hopf bifurcation points. Models
for biologically-reasonable parameter values,
exhibits stable, limit cycles, unstable periodic
and chaos. The dynamical behaviour is found
to be very sensitive to parameter values and
initial conditions as well as the parameters of the
practical life. That is, a very small change in these
values, produces unpredictable results known as
chaos. Another property of the nonlinear systems
also experienced during the calculations is long-
term predictions are impossible. In this paper, all
important mathematical findings are numerically
verified and graphical representation of a variety
of solutions of the systems (2) are depicted using
MATLAB R2010a. Numerical study shows
that, using the parameter a as control (12), it
is possible to break the stable behaviour of the
system and drive it to an unstable state. Also it is
possible to keep the levels of the populations at a
stable state using the above control.
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