Please use this identifier to cite or link to this item: http://umt-ir.umt.edu.my:8080/handle/123456789/4529
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNorizan Mohamed-
dc.date.accessioned2016-04-29T13:08:52Z-
dc.date.available2016-04-29T13:08:52Z-
dc.date.issued2011-05-
dc.identifier.urihttp://hdl.handle.net/123456789/4529-
dc.description.abstractKajian ini bertujuan membina model terbaik bagi penelahan tenaga elektrik di Malaysia. Untuk mendapatkan model terbaik, data setiap setengah jam tenaga elektrik bagi tempoh setahun digunakan dengan peratus purata ralat mutlak (PPRM) sebagai ukuran kejituan telahan. Tiga kaedah iaitu model Purata Bergerak Terkamir Autoregresi Dua Musim (PBTADM), model rangkaian neural pelbagai lapis suap hadapan dan model gabungan dipertimbangkan.en_US
dc.language.isoenen_US
dc.publisher[Johor]: Universiti Teknologi Malaysiaen_US
dc.subjectTJ 216 .N6 2011en_US
dc.subjectNorizan Mohameden_US
dc.subjectTesis Universiti Teknologi Malaysia 2011en_US
dc.titleParametric and artificial intelligence based methods for forecasting short term electricityen_US
dc.typeThesisen_US
Appears in Collections:Staff Thesis

Files in This Item:
File Description SizeFormat 
tesis TJ 216 .N6 2011 Abstract.pdf1.26 MBAdobe PDFView/Open
tesis TJ 216 .N6 2011 FullText.pdf
  Restricted Access
21.95 MBAdobe PDFView/Open Request a copy


Items in UMT-IR are protected by copyright, with all rights reserved, unless otherwise indicated.