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PENYEDIAAN, PENCIRIAN DAN SIFAT-SIFAT ADUNAN

POLIPROPILENA/SERBUK SISA TAYAR (PP/WTD)

ABSTRAK

Termoplastik dan getah sisa daripada tayar terbuang telah dicampurkan
bagi menyediakan adunan polipropilena/serbuk sisa tayar (PP/WTD). Semua
adunan disediakan di dalam pencampur dalaman pada suhu 180°C, putaran 50
rom untuk suatu tempoh adunan di antara 9 dan 13 minit. Pencirian telah
dilakukan untuk mengenalpasti sifat-sifat adunan dan menyelidik kesan-kesan
salz serbuk sisa tayar, penggunaan pemvulkanan dinamik dan ko-agen,
penambahan bahan polimer lain dan pendedahan pencuacaan semulajadi
selama 6 bulan terhadap sifat mekanik, morfologi, rintangan pembengkakan, dan
sifat-sifat haba adunan tersebut. = Tanpa mengira saiz, sisa getah yang
tersambung silang dan mengandungi kandungan karbon yang tinggi telah
didapati berfungsi seperti pengisi tanpa-menguat. Peningkatan penyebaran
zarah WTD dan interaksi dengan matriks PP menyumbang kepada sifat yang
lebih baik bagi adunan yang mengandungi WTD halus. Peningkatan interaksi
antara muka di antara matriks PP dan WTD akibat daripada penambahan getah
trans-polioktilena (TOR) bersama sulfur, dikumil peroksida (DCP) dan N, N-m-
fenilenabismalemida (HVA-2) kepada adunan adalah punca utama peningkatan
keseluruhan morfologi, sifat-sifat mekanik, rintangan pembengkakan, dan sifat-
sifat haba adunan. Penambahan WTD yang terubahsuai dengan lateks getah
asli (NR) merintis kekusutan zarah getah tersambung-silang dengan matriks PP
yang menggalakkan peningkatan rekatan dengan WTD dan menyebabkan
peningkatan terhadap sifat-sifat mekanik, rintangan pembengkakan, dan sifat-

sifat haba adunan. Sementara itu, penambahan WTD yang terubahsuai dengan
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getah asli (NR) dan WTD yang terubahsuai dengan etilena-propilena diena
terpolimer (EPDM) meningkatkan keanjalan rantatan adunan PP/WTD.
Penambahan bahan-bahan berkenaan telah menggalak pembentukan kawasan
antara muka dan seterusnya meningkatkan lagi interaksi di antara matriks PP
dan WTD sebagaimana yang dibuktikan oleh sifat-sifat adunan yang lebih baik.
Selepas 6 bulan pendedahan kepada pencuacaan semulajadi, keseluruhan
adunan telah menunjukkan kemerosotan sifat. Sementara adunan yang
mengandungi WTD halus telah menunjukkan sifat mekanik yang lebih baik
daripada adunan yang mengandungi WTD kasar, kebanyakan adunan yang
mengandungi WTD terubahsuai telah mempamerkan sifat mekanik yang lebih
unggul dan penahanan sifat yang pelbagai beserta sifat haba yang lebih baik
dartpada adunan asal tanpa sebarang pengubahsuaian terhadap WTD. Ini
menunjukkan kewujudan interaksi yang lebih baik di antara matriks PP dan WTD

yang terubahsuai.
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PREPARATION, CHARACTERIZATION AND PROPERTIES OF

POLYPROPYLENE/WASTE TIRE DUST (PP/WTD) BLENDS

ABSTRACT

Thermoplastics and waste rubber from scrap tires were mixed to prepare
polypropylene/waste tire dust (PP/WTD) blends. All blends were prepared in an
internal mixer at a temperature of 180°C, a rotor speed of 50 rpm and a mixing
period between 9 and 13 min. Characterization was done to determine the
properties of the blends and to investigate the effects of WTD size, application of
dynamic vulcanization and co-agents, addition of other polymeric materials and a
o-month exposure to natural weathering on the mechanical properties,
morphology, swelling resistance and thermal properties of the blends.
Irrespective of size, the highly cross-linked waste rubber with a high content of
carbon black behaved like non-reinforcing fillers. An improved distribution of WTD
particles and hence interactions with the PP matrix rendered superior properties
to the blends with fine WTD. Formations of enhanced interactions across the
interface of the PP matrix and WTD as a result of addition of trans-polyoctylene
rubber (TOR) together with sulfur, dicumyl peroxide (DCP) and N, N-m-
phenylenebismaleimide (HVA-2) to the blends were the pivotal ascriptions to the
overall improvements in morphology, mechanical properties, swelling resistance
and thermal properties of the blends. Addition of natural rubber (NR) latex
modified WTD initiated the creation of entanglements of vulcanized rubber
particles with the PP matrix promoting improved adhesion with WTD resulting In
enhanced mechanical properties, swelling resistance, and thermal properties of
the blends. Meanwhile, the addition of NR modified WTD and ethylene-

propylene diene terpolymer (EPDM) modified WTD improved chain flexibility of
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the PP/WTD blends. Their addition to the blends favored formations of interfacial
region and hence improved interaction between the PP matrix and WTD as
evidenced by superior properties of the blends. After the 6-month exposure to
natural weathering, all blends exhibited deteriorations in properties. Whilst,
blends with fine WTD demonstrated higher mechanical properties after the
exposure than those with coarse one, mostly all blends with WTD modification
exhibited higher mechanical properties with variations of retention and unveiled
better thermal properties than those without any modification alluding to the

presence of improved interactions between the PP matrix and modified WTD.
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