



Abstract—Software quality is a tacit and multifaceted concept

of desired combination of software attributes. Quality is

commonly considered as product property, thus the product

view of quality seeks to identify those properties which can be

built into a product and assessed to certify quality. The goal of

assessment is to satisfy the stakeholders of the software.

However there is no single correct quality model may be

accepted by researchers and experts in modelling and measuring

the software quality. The goal of quality assessment should move

towards sustainable software quality. This paper presents part

of work done in assessing software quality for sustainability.

Among the objectives is making concerns of user’s perspective is

crucial among the principles of assessment. Software quality

metrics can be employed to asses and quantify the software

quality value and helps in reducing the ambiguity of the view

towards sustainable software.

Index Terms—Software quality, software quality model,

software quality assessment, sustainability, quality factors,

quality metrics.

I. INTRODUCTION

Nowadays, the software role and position continuously

demanded in many information systems. Thus, any software

defects may lead to serious damage and even physical harm

[1]-[3]. Software developers also compete to produce

software products quicker and in simple approach. However

software project is considered failed if it is over schedule,

over budget, suffer to achieve the business objective and does

not meet user requirements [1], [4]. From the social and

economic aspects, customers or users will lose their

confidence. In term of economy; maintenance cost will

multiply if the project fails. The software applications are

more transparent and much closer to the users due to the

current development and technologies. Software development

cycle becomes shorter which require dynamic user

commitment. The scenarios reveal that users are more

analytical towards diverse functional and non-functional

features of the software [5]-[8]. This confirm that producing a

quality software is very important in order to sustain the

software and able to last longer over a period of time.

Sustainability in this context refers to environmental, social,

Manuscript received December 5, 2015; revised February 23, 2016. This

work was supported in part by the UKM Grant AP2013-007 and Kolej

Poly-Tech MARA.

 Nur Zuria Haryani Zakaria is with Kolej Poly-Tech MARA, Bandar Baru

Bangi, 43650, Malaysia (e-mail: nzharyani@yahoo.com).

Abdul Razak Hamdanr and Jamaiah Yahaya are with National University

Of Malaysia (UKM), Bandar Baru Bangi, 43650, Malaysia (e-mail:

arh@ukm.edu.my, jhy@ukm.edu.my).

Aziz Deraman is with University Malaysia Terengganu, 21030 Kuala

Terengganu, Malaysia (e-mail: a.d@umt.edu.my).

and economic aspects of software development and the usage

of software system [9]-[12].

II. SOFTWARE QUALITY

Software quality is the degree to which software possesses

a desired combination of attributes. This desired combination

of attributes must be well defined; otherwise the quality

assessment is left to intuition [13]. For that matter, defining

software quality is equivalent to defining a list of software

quality attributes required for one system. However quality is

tacit and is not easy to be measured [14]. Quality is commonly

considered as a property of a product, thus the product view of

quality seeks to identify those attributes which can be

designed into a product or to be evaluated to ensure quality

[15], [16]. Ref [5] reframe “What is software quality?” to

“How do we satisfy the customers of our software?”. It is

based on reasoning that by making matters of customer

satisfaction is central among the criteria for assessing

software, actions will materialize towards making reliable and

trustworthy software. Quality comprises all characteristics

and substantial features of a product or an activity related to

the satisfying of given requirements [3], [17].

The misunderstanding and ambiguity of the popular

opinion about software quality however will not benefit the

quality improvement effort in the industries. Thus quality

must be expressed in a workable description [4], [17].

Software quality also become the key competition for

software product market. Threfore, software quality control

and assessment is a continous responsibility in delivering high

quality software[3]. Software quality cannot be specified in an

unambiguous way because it is impossible to measure certain

quality characteristics directly.

A. Quality

Quality is a dynamic concept and the definitions are

numerous and at variance [18]. It is a complex multifaceted

concept of quality described from five different perspectives:

 The transcendental perspective defines quality as

something that can be recognized but not defined in

advance.

 The user perspective defines quality as fit for purpose.

 The manufacturing perspective defines quality as

conformance to specification.

 The product view defines quality in terms of essential

characteristics of the product in question.

 The value-based view defines quality in terms of the

amount a customer is willing to pay for it.

Other conceptions of quality are:

IEEE Standard (IEEE Std 729-1983):

User Centric Software Quality Model For Sustainability: A

Review

Nur Zuria Haryani Zakaria, Abdul Razak Hamdan, Jamaiah Yahaya, and Aziz Deraman

Lecture Notes on Software Engineering, Vol. 4, No. 3, August 2016

199doi: 10.18178/lnse.2016.4.3.250

mailto:arh@ukm.edu.my

1) “The totality of features and characteristics of a software

product that bear on its ability to satisfy given needs: for

example, conform to specifications.

2) The degree to which software possesses a desired

combination of attributes.

3) The degree to which a customer or user perceives that

software meets his or her composite expectations

4) The composite characteristics of software that determine

the degree to which the software in use will meet the

expectations of the customer".

ANSI Standard (ANSI/ASQC A3/1978):

"Quality is the totality of features and characteristics of a

product or a service that bears on its ability to satisfy the given

needs".

B. Software Quality Assessment

Different stakeholders assess software products differently

[1], [3], [19], [20]. For example, users concern about the

whole product while it is operational, while the developers

may be interested in developing quality software [1], [19].

Software quality engineering needs to utilize a quality model

throughout the software lifecycle which incorporates all the

perspectives of quality model and different stakeholders [14].

The growth of number of research on developing the new

software measures is due to the increasing significance of

software measurement [21]. The quality model helps to

provide a base for assessing and measuring characteristics

like size, complexity, performance and quality. Measurement

is a mechanism for answering a variety of questions

associated with the performance of any software process [22].

It applies also in evaluating software product. Software

measurement is concerned with deriving a numeric value or

profile for an attribute of a software component, system or

process to draw conclusion about the software quality, or

asses the effectiveness of software processes, tools, and

methods [23].

Measuring software quality has been investigated for years

in software engineering (SE). Software assessment and

measurement must obey the science of measurement. To

assess and measure is an identifying attribute of entities of

interest in software, which are processes, products, or

resources. Attributes are either internal or external [4]. A

software product is also assessed by the degree of satisfaction

to required quality [3]. The development of software with

goal to acquire quality can avoid the waste of time and effort.

Therefore it is crucial to clearly define quality requirement,

and to evaluate the product at the early stage of life-cycle

concretely. Software quality assessment is expected to assist

developer to identify and correct the defect thus to avoid the

negative assessment by users [3], [14], [24], [25].

Software measurement can be categorized into direct

measurement and indirect measurement. Direct measurement

includes lines of code produced, execution speed, memory

size, and defect reported over some period of time. Indirect

measurement of products may include functionality,

complexity, efficiency, reliability, and many others. These

characteristics are unmeasurable software characteristics

decomposed into several subcharacteristics and metrics of

quality characteristics. The unmeasurable characteristics are

the base to generate measureable metrics [4]-[7], [26]. An

applicable set of software metrics shall be established to

enable the measurement of software quality attributes (IEEE

std 1061-1992).

C. Software Quality Metrics

Software quality metric is a tool of measurement whose

output is a single numerical value that can be interpreted as

the degree to which software possesses a given attribute that

affects its quality [4], [27]. This area of software metric

claimed to be under research in SE [28]. Nevertheless it has a

major function in software engineering [23], [27]. Metric can

be defined as a quantitative measures of software or processes

for a given attributes to assess quality [6], [7], [15], [16]. The

principle of software metrics is to make assessments

throughout the software life cycle, to measure whether the

software quality needs are being met. The advantages of

software metrics is it provides a quantitative basis in the

assessment of software quality. Thus it reduces the

subjectivity and make the software quality more visible. On

the other hand the for human judgement in software

assessment is still demanded [6], [7], [15], [16], [27], [28].

III. SOFTWARE QUALITY MODEL

A software quality model, set of characteristics and the

relationships between them provides basis for specifying

quality requirements and assessing quality of a software [4],

[26]. A quality model is a reflection of quality from a precise

view. Engineers have long recognized that in order for

something to find its way in a product, it should be properly

defined and specified [28]. A solid foundation in the form of

an agreement upon quality model is very crucial in the

industry [29], [30]. A software product is assesed by the

degree of satisfaction to the required quality [3]. The

development of software with goal to acquire quality can

avoid the waste of time and effort and to avoid the negative

assessment by users towards the application [4], [8], [23].

Therefore it is necessary to clearly define quality requirement

[3]. Software quality assessment is expected to contribute and

assist developer and tester to identify and correct the defect.

Since 1970s to 2000s, the development of software product

and software quality and assessment methods has progress [4].

The assessment method grow from measurement of

complexity, estimation, internal measurements to the

development of software quality model such as McCall and

Boehm model [6], [31].

At current trend, software quality models are still in the

scope of technology, and behavioral views of assessment.

Thus Ref [6], [7] focus on development of software quality

factors and metrics that based on user’s perspective and views.

Software certification model by user centric approach is

proposed to improve the existing software certification model

to meet user’s needs and demands. Previous research has

develop a number of software quality models to support

software quality. Among the popular models are McCall’s

quality model, Boehm’s quality model, Dromey quality model,

ISO 9126,ISO 25010, and UcSoftC [6], [7], [28], [31]. The

earliest models of quality such as McCall, Boehm, FURPS

and ISO 9126 are limited to measure of external software

characteristics which consider less other needs such as

Lecture Notes on Software Engineering, Vol. 4, No. 3, August 2016

200

conformance of user requirements and expectation [6], [32],

[33].

A. Mc Call Quality Model (1977)

This model has been introduced in 1977 by Jim McCall, is

the first of the modern software product quality models [23].

It is addressed to the system developer, to be used during the

system development process. It is to match and reflect the

user’s opinion and system developers concern [33]. In

categorizing the software quality attributes, McCall identify

three main perspectives: Product Revision, Product Operation

and Product Transition [34]. The model uses a hierarchy of

factors, criteria and metrics to address internal and external

product quality [17]. Further metrics are associated with the

factors allowing quality to be measured and managed [4], [8],

[32]. Among the major contributions is the relationship

formed between metrics and quality factors. However one

view not considered directly is the software functionality.

TABLE I: MC CALL QUALITY MODEL

Perspectives Factor

Product Revision Maintanability, Flexibility, Testability

Product

Transition

Portability, Reusability, Interoperability

Product

Operation

Correctness, Reliability, Efficiency, Intergrity,

Usability

B. Boehm’s Quality Model (1978)

Boehm’s quality model follows the McCall quality model

[8], [23]. It begins with the software general utility from

various dimensions Like McCall’s model, Boehm’s model

presents product quality in a hierarchy with three high level

characteristics linked to seven intermediate factors, which are

in turn linked to 15 primitive characteristics [17]. Therefore

Boehm’s model gives more emphasis on the

cost-effectiveness of maintenance. It has a wider scope than

McCall. This model attempts to define and express the quality

of software by a predefined set of attributes and metrics as is

Table II [32].

TABLE II: BOEHM QUALITY MODEL

Product

Perspective

Factors Criteria

Portabilitty Device Independence,

Completeness

As-Is-Utility Reliability Self containedness, Intergrity,

Accuracy

 Efficiency Accountability, Accessibility

 Human

Engineering

Accessibility,

Communicativeness

Maintainability Testability Structuredness, Accountability,

Accessibility

 Understandibility Legibility, Conciseness,

Structuredness,

Self-descriptiveness

 Modifiability Structuredness, Augmentability

C. Dromey Quality Model (1995)

Ref [30] proposed a model consisting of eight high-level

quality attributes, namely the same six from ISO 9126 adding

Reusability and Process Maturity. The model level quality

attributes, namely the same six from ISO 9126 plus

Reusability and Process Maturity. It suggested a more

dynamic idea for modeling the process on three prototypes

concerning quality [30], [35]. Dromey claims that quality

process only exist if it is based on a product quality model

[33].

D. FURPS Quality Model

FURPS model proposed by Grady B. R. and Hewlett

Packard Co. categorized characteristics into two different

requirements such as Functional Requirements (F) which is

defined by expected input & output and Non Functional

Requirements in which U sands for Usability (includes human

factors, aesthetic, documentation of user and material of

training), R stands for Reliability (includes frequency and

severity of failure, recovery to failure, time among failure), P

stands for Performance (includes functional requirements)

and S stands for Supportability (includes backup, requisite of

design, implementation, interface) [17], [36].

TABLE III: FURPS QUALITY MODEL

Characteristics Sub Characteristics

Functionality Joint of characteristics, Capacities, Security

Usability Human Factors, Aesthetics, Documentation of the

user, Material of Training

Reliability Frequency and severity of failures, Recovery to

failures, Time among failures

Performance Velocity, Efficiency, Availability, Time of answers,

Time of recover, Utilization of resources

Supportability Testability, Extensibility,Adaptability,

Maintainability, Compatability, Configurability,

Serviceability, Installability, Localizability

E. Systemic Quality model

The systemic quality model is developed by identifying the

relationship between product-process,

efficiency-effectiveness and user-customer to obtain global

systemic quality [36]. Process Effectiveness and Process

Efficiency are essential elements of the model but are not

present in the Dromey or ISO 9126. It includes Process and

Product dimension. In order for the quality evaluation to be

systemic, The Process dimension is incorporated [33]. The

model serves as a benchmark that allows their products to

evolve and be competitive. The disadvantages of this model is

the absence of the user requirements and conformation

aspects [6].

F. ISO 25010:2011

The international standard most directly applicable to

software quality control is SQuaRE series of standard of the

Internatinal Organization for Standardization (ISO). This

Standard is derived from revised ISO/IEC 9126:1991. It

defined quality characteristics and described a software

product evaluation process model and incorporates the same

software quality characteristics with some amendments [5],

[37]. ISO 25010 consists of quality in use and product quality

models as summarized below. Product Quality is the static

properties of the model concerns of computer software and

dynamic properties systems. The Quality in Use model relates

to the interaction outcome when a product is used in a

particular context of use. These characteristics subdivided

into the respective sub characteristics. Each characteristic is

composed of a set of related sub characteristics [32].

G. UcSoftC Quality Model

The user centric software certification (UcSoftC) model is

a new model [6] that is claimed to fulfill the requirement of

Lecture Notes on Software Engineering, Vol. 4, No. 3, August 2016

201

organization according to demands and constraints in

software product quality and assessment because it supports

the user centric approach in assessing and certifying the

software [5]-[7]. The model proposed the improvement in the

certification process. It enables software users to assess and

certify their own products in their own environment with

tailored and chosen attributes based on the organization's

requirements and expectations.

TABLE IV: ISO 25010:2011: PRODUCT QUALITY MODEL

Characteristics Sub Characteristics

Functional

suitability

Functional completeness, Functional

Appropriateness , Functional correctness

Performance

efficiency

Time Bahavior, Resource Utilization, Capacity

Compatibility Co-existence, Interoperability

Usability Appropriateness recognizability, Learnability,

Operability, User error protection, User

interface aesthetics, Accessibility

Reliability, Maturity, Availability, Fault Tolerance,

Recoverability

Maintainability Modularity, Reusability, Analysability

Modifiability, Testability

Portability Adaptability, Installability, Replaceability

Security Confidentiality, Integrity,

Non-repudiation, Accountability, Authenticity

Operability Appropriateness, Recognizability

TABLE V: ISO 25010:2011 : QUALITY IN USE QUALITY MODEL

Characteristics Sub Characteristics

Satisfaction Usefulness, Trust, Pleasure, Comfort

Effectiveness

Efficiency

Freedom from Risk Economic risk mitigation, Health and safety

risk mitigation,

Environmental risk mitigation

Context coverage Context completeness, Flexibility

H. PQF

Pragmatic quality factor (PQF) is practical software quality

model which can be used in assessment of software operating

in certain environment involving the user. PQF consists of

four main components: I) behavioural attributes, 2) impact

attribute, 3) responsibility and measurement of metrics and 4)

classification of attributes and weight factors. This model is

beneficial and valuable to the organizations because it applies

Weighted Scoring Method [6], [7]. It also fill the void of the

earliest models of quality such as McCall, Boehm, FURPS,

which limit the measurement of external software

characteristics consider less other needs such as conformance

of user requirements and expectation. This model exhibit that

the unmeasurable characteristics can be measured indirectly

using measures and metrics approach. It has been validated

involving assessment and certification applications in real

case studies in Malaysia [6], [7].

IV. USER CENTRICITY

User involvement in assessing software is vital as they

involve in many stages of software lifecycle [3], [12].

Commonly, user centric approach focuses in emphasizing

user perspective in assessing software product operating in

their environments [5]-[7]. The significance of software is not

only for business excellence and sustainability, but also

include the user and society [6]. Thus embracing user

centricity and providing the paradigm where people and user

are considered as stakeholder is crucial [5], [38]. The

convention of social network application like Twitter,

WhatsApp, Facebook, and many others signify the immense

pressure of software and computers in human life [5]. Ref [38]

offered his conception on customer satisfaction; (1) when the

basic promises is fulfilled, (2) no negative consequences is

produced and (3) the customer is happy with the product and

service. Software quality is evolving beyond static

measurement to an expansive area of quality description, the

importance of human aspect in assessment must be

incorporated in the process. Previous studies had suggested

the human aspect in software quality, however did not include

comprehensively this aspect together with the behavioural

aspect of software quality [1], [5]-[7], [29]. Improvements in

user involvement may lead to an improved quality as

perceived by the end users [1], [5]-[7]. The available software

quality models such as McCall, Boehm, Dromey and FURP’S

[27], [39] only target the software product or process

characteristics and does not fit to measure software quality

from user point of view [4]. Therefore those models need to

be revised and extended to include users in the process [1],

[38].

V. THE CONCEPT OF SUSTAINABILITY

There still is no concrete and definite direction for the

different aspects of sustainability that are observable from the

point of view of software engineering (SE) [9], [10], [36].

This can due to the fact that the concept of sustainability does

not become adequately tangible from the definition [11], [12].

Currently, there are little research on the different aspects of

sustainability in SE while other disciplines are already more

active [9]-[12], [36]. The general definition of sustainability

is the “capacity to endure” [11] and sustainable development

as “meeting the needs of the present without compromising

the ability of future generations to meet their own needs” [16].

Sustainable software also can be defined as software whose

direct and indirect negative impacts on economy, society,

human beings, and the environment resulting from

development, deployment, and usage of the software is

minimal and/or has a positive effect on sustainable

development [40]. Sustainability has not been fully supported

as a significant, first-class interest by traditional SE [12], [40].

Software engineers approach specific topics that have to do

with sustainability in this discipline. As example, green IT,

efficient algorithms, smart grids, agile practices and

knowledge management, but it is still deficient of a common

understanding consensus of the sustainability concept in SE

and if and how it can be applied to SE [11], [12], [40].

While sustainability is a standardized practice in a number

of engineering disciplines there is currently no such

awareness within the SE community [9], [10] , [18], [28], [36],

[40]. Thus the sustainability assessment can be considered as

another quality aspect. In [13], [14] a quality model (25010+S)

based on ISO/IEC 25010 that considers sustainability as a

new factor that affects quality was presented. Ref [35]

propose a Generic Sustainable Software Star Model (GS3M)

that forms the basis towards a “complete” view of sustainable

software. The model covers different sustainability

Lecture Notes on Software Engineering, Vol. 4, No. 3, August 2016

202

dimensions: environmental, technical, social, individual and

economic. Corresponding software sustainability values,

attributes and metrics are defined for each dimension. The

measurement of software sustainability is expected to provide

basis for measured software improvement [35], [41].

Since many years sustainability is becoming a challenging

issue in software engineering domain. However no clear nor

exhaustive characterization was proposed to the concept of

“sustainable software” [11], [12], [28], [40], [42]. Therefore

sustainability remains an intangible idea for software systems

and consequently can’t be assessed nor controlled nor

enhanced.

VI. CONCLUSION AND FUTURE WORKS

Software quality engineering needs a quality assessment

model throughout the software lifecycle and includes all the

perspectives of quality model. The quality model should be

the basis for measuring software sustainability. The quality

model must involve the users as the significant stakeholders

because users demand a sustainable software that gives

positive impact on economy, society, human beings, and the

environment resulting from development and deployment of

the software. Therefore software quality should be considered

in assessing the software sustainability. As the concept of

sustainability in software engineering is still in infancy, this

research is to explore the inclusion of software quality in the

assessment of software sustainability from the user’s

perspective.

ACKNOWLEDGMENT

This research is partly funded by National University of

Malaysia under Advanced Nature Inspired Computing For

Spatio-Temporal Climate Change Predictive Analysis Grant

Scheme (AP2013-007) and Kolej Poly-Tech MARA,

Malaysia.

REFERENCES

[1] I. Atoum and C. H. Bong, "A framework to predict software ‘quality in

use’ from software reviews," in Proc. the First International

Conference on Advanced Data and Information Engineering, 2014,

pp. 429–436.

[2] M. Azuma, "Systems engineeringapplying ISO / IEC 9126-1 quality

model to quality requirements engineering on critical software

department of industrial and management," in Proc. the 3rd

International Workshop on Requirements Engineering for High

Assurance Systems, Kyoto, Japan, 2004.

[3] D. Garvin, "What does ‘product quality’ really mean?" Sloan

Management Review, vol. 26, pp. 25-43, 1984.

[4] N. Fenton, "Software measurement : A necessary scientific basis,"

IEEE Transaction on Software Engineering, vol. 20, no. 3, pp.

199–206, 1994.

[5] A. Deraman, J. Yahaya, F, Baharom, and A. R. Hamdan, "User-centred

software product certification : Theory and practices," International

Journal Of Digital Society (IJDS), vol. 1, no. 4, pp. 281–288, 2010.

[6] J. Yahaya, A. Deraman, A. R. Hamdan, and Y. Jusoh, "User-perceived

quality factors for certification model of web-based system,"

International Journal of Computer, Information, Systems and Control

Engineering ,vol. 8, no. 5, pp. 640–646, 2014.

[7] J. Yahaya, A. Deraman, S. R. Ibrahim, and Y. Y. Yusoh, "Software

certification modeling: From technical to user centric approach,"

Australian Journal of Basic and Applied Sciences, vol. 7, no. 8, pp.

9-18, 2013.

[8] J. Patton, "Understanding user centricity," IEEE Software, vol. 24, no.

6, pp. 9–11, 2007.

[9] C. Calero, M. Bertoa, and M. Moraga, "A systematic literature review

for software sustainability measures," in Proc Green and Sustainable

Software (GREENS) 2nd International Workshop, 2013, pp. 46–53.

[10] C. Calero, M. Bertoa, and M. Moraga, "Sustainability and quality:

icing on the cake," in Proc 2nd International Workshop on

Requirements Engineering for Sustainable Systems (RE4SuSy), 2013.

[11] B. Penzenstadler, "Towards a definition of sustainability in and for

software engineering," in Proc. 28th Annual ACM Symposium on

Applied Computing 2013, pp. 1183–1185.

[12] B. Penzenstadler and H. Femmer, "A generic model for sustainability,"

Technical Report, p. 6, 2012.

[13] IEEE Standard Glossary of Software Engineering Terminology, 1990.

[14] S. Barney and C. Wohlin, "Software product quality: Ensuring a

common goal," Lecture Notes in Computer Science, Springer, vol.

5543, pp. 256–267, 2009.

[15] N. Bevan, "Measuring usability as quality of use,” Software Quality

Journal, vol. 4, pp. 115–130, 1995.

[16] N. Bevan, "Quality in use: Meeting user needs for quality," Journal of

Systems and Software, vol 49, pp. 89–96, 1999.

[17] R. A. Khan, K. Mustafa, and S. I. Ahson, Software Quality Concepts

and Practices, 2006.

[18] M. Al Hinai, "Quantification of social sustainability in software," in

Proc. IEEE 22nd International Requirements Engineering Conference,

2014, pp. 456–460.

[19] I. Somerville, Software Engineering, 9th ed. Addison-Wesley, 2011, p.

668

[20] S. K. Dubey, S. Ghosh, and P. A. Rana, "Comparison of software

quality models : An analytical approach," International Journal of

Emerging Technology and Advanced Engineering, vol. 2, no. 2, pp.

2250-2259, 2012.

[21] S. F. Ahmad, M. R. Beg, and M. Halem, "A Comparative Study of

Software Quality Models," International Journal of Science,

Enginering and Technology Research, vol. 2, no. 1, pp. 172–176,

2013.

[22] V. Caldiera and H. Rombach, "The goal question metric approach,"

Encyclopedia of Software Engineering, vol. 2, pp. 1–10, 1994.

[23] B. Kitchenham and S. L. Pfleeger, "Software quality," IEEE Software,

1996.

[24] H. Subramaniam and H. Zulzalil, "Software quality assessment using

flexibility: A systematic literature review," International Review on

Computers & Software, vol. 7, no. 5, 2012.

[25] D. Jamwal, "Analysis of software quality models for organizations,"

International Journal of Latest Trends in Computing, vo1, no. 2, pp.

19–23, 2010.

[26] M. Azuma, "Software products evaluation system: Quality models,

metrics and processes — International Standards and Japanese

practice," Information and Software Technology, vol. 38, no. 3, pp.

145–154, 1996.

[27] K. Akingbehin, "Taguchi-based metrics for software quality," in Proc.

Fourth Annual ACIS International Conference on Computer and

Information Science, 2005, pp. 713–716.

[28] Marc-alexis and M. Ing., "Software quality model requirements for

software quality engineering," Quality Engineering, pp. 38–54, 2005.

[29] N. Bevan and M. Azuma, "Quality in use: Incorporating human factors

into the software engineering lifecycle," in Proc. Software

Engineering Standards Symposium and Forum, 1997, pp. 169-179.

[30] R. G. Dromey, "A model for software product quality," IEEE

Transactions on Software Engineering, vol 21, pp. 146–162, 1995.

[31] Suman and M. Wadhwa," A comparative study of software quality

models," International Journal of Computer Science and Information

Technologies, vol. 5, no. 4, pp. 5634–5638, 2014.

[32] S. Wagner, Software Product Quality Control, 2013.

[33] O. Maryoly, P. María, and R. Teresita, "Construction of a systemic

quality model for evaluating a software product," Software Quality

Journal, vol. 11, no. 3, pp. 219-242, 2003.

[34] IEEE Standard for a Software Quality Metrics Methodology, 1993.

[35] A. Rawashdeh and B. Matalkah, "A new software quality model for

evaluating COTS components," Journal of Computer Science, vol. 2,

no. 4, pp. 373–381, 2006.

[36] C. Calero, M. Moraga, M. Bertoa, and Duboc, "Quality in use and

software greenability," CEUR Workshop Pcoceeding, vol. 1216, pp.

28-36, 2014.

[37] H. Abu Bakar and R. Razali, "A preliminary review of legacy system

evaluation models," Journal of Software, vol. 9l, no. 1, pp. 314–318,

January 2014.

[38] P. J. Denning, "What is software quality," Communications of the

ACM, vol 35, no. 1, pp. 13–15, 1992.

Lecture Notes on Software Engineering, Vol. 4, No. 3, August 2016

203

[39] R. Amri and N. B. B. Saoud, "Towards a generic sustainable software

model," in Proc. Fourth International Conference on Advances in

Computing and Communications, 2014, pp. 231–234.

[40] M. Dick, S. Naumann, and N. Kuhn, "A model and selected instances

of green and sustainable software," What Kind of Information Society?

Governance, Virtuality, Surveillance, Sustainability, Resilience, vol.

238, pp. 248-259, 2010.

[41] R. C. Seacord, J. Elm, W. Goethert, G. A. Lewis, D. Plakosh, J. Robert,

and L. Wrage, "Measuring software sustainability," in Proc. the

International Conference on Software Maintenance, September 2003,

p. 450.

[42] M. Al Hinai and R. Chitchyan, "Social sustainability indicators for

software: Initial review," in Proc. the Third International Workshop on

Requirements Engineering for Sustainable Systems, 2014, vol. 1216,

pp. 21–27.

Nur Zuria Haryani Zakaria is an information technology

lecturer at Kolej Poly-Tech Mara (KPTM). She obtained

her master degree from National University of Malaysia

(UKM) in 2007, and is a PhD candidate at the National

University of Malaysia (UKM). Her research interests are

software quality, software sustainability, software

assessment, data mining and artificial intelligence.

Abdul Razak Hamdan is a professor at the Faculty of

Technology and Information Science and Technology,

National University of Malaysia (UKM). His research

interest are combinatorial optimization data mining and

impact study and strategic planning. He is an active

researcher with several postgraduate students. He is the

chairman of the Content Base Informatics Niche in UKM

and is the Head of Data Mining And Optimization Group at this Faculty

Jamaiah H. Yahaya is an associate professor at the

National University of Malaysia (UKM). She received

her masters from University of Leeds, UK in 1998, and

PhD from The National University of Malaysia (UKM) in

2007. Her research interests are software certification,

software quality, software maintenance, and software

ageing/anti-ageing.

Aziz Deraman is the dean of the School of Informatics

and Applied Mathematics, University Malaysia

Terengganu. He received his masters from Glasgow

University in 1984 and PhD from the University of

Manchester Institute of Science and Technology

(UMIST) in 1992. He is presently a senior professor of

software engineering specializing in software process,

management and certification.

Lecture Notes on Software Engineering, Vol. 4, No. 3, August 2016

204

