HEAVY METAL CONTENT (Cd. Mm. Cu., Zm., Pb) IN OYSTER (Crassostrea iredalei) FROM SETIU LAGOON, TERENGGANU

MOHD AZLISHAM BIN ABD RAHMAN

FACULTY OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAYSIA TERENGGANU 2008

1100061847 Haevy metal content (Cd, Mn,Cu, Zn, Pb) in oyster (Crassostrea iredalei) from Setiu Lagoon, Terengganu / Mohd Azlisham Abd

PERPUSTAKAAN SULTANAH NUR ZAHIRAH UNIVERSITI MALAYSIA TERENGGANU (UMIT) 21030 KUALA TERENGGANU

	21030 KUALA TERENGGA	NU
1	1000618	17
		- 1
	-	
	 	
*		
	-	
		e e e e e e e e e e e e e e e e e e e

Lihet sebeleh

HAK ISILEK PERPUSTAKAAN SULTANAH HUR ZAHIRAH GIGE

HEAVY METAL CONTENT (Cd, Mn, Cu, Zn, Pb) IN OYSTER (Crassostrea iredalei) FROM SETIU LAGOON, TERENGGANU

By

MOHD AZLISHAM BIN ABD RAHMAN

Research Report submitted in partial fulfillment of the requirements for the degree of Bachelor of Science (Marine Biology)

Department of Marine Science
Faculty of Maritime Studies and Marine Science
UNIVERSITI MALAYSIA TERENGGANU
2008

Lampiran 8 (Borang Pengakuan dan Pengesahan Laporan Akhir Projek Penyelidikan)

JABATAN SAINS MARIN FAKULTI PENGAJIAN MARITIM DAN SAINS MARIN UNIVERSITI MALAYSIA TERENGGANU

PENGAKUAN DAN PENGESAHAN LAPORAN PROJEK PENYELIDIKAN I DAN II

Adalah ini diakui dan disahkan bahawa laporan penyelidikan bertajuk:

HEAVY METAL CONTENT (Cd, Mn, Cu, Zn, Pb) IN OYSTER (Crassostrea iredalei) FROM SETIU LAGOON TERENGGANU.

Oleh Mohd Azlisham bin Abd Rahman, No.Matrik uk12062 telah diperiksa dan semua pembetulan yang disarankan telah dilakukan. Laporan ini dikemukakan kepada Jabatan Sains Marin sebagai memenuhi sebahagian daripada keperluan memperolehi Ijazah Sarjana Muda Sains (Biologi Marin), Fakulti Pengajian Maritim dan Sains Marin, Universiti Malaysia Terengganu.

Disah	kan	ol	el	'n.
Distail	Null	V	~	

Penyelia Utama

Nama: PROF. DR. NOOR AZHAR MOHAMED SHAZILL

Cop Rasmi:

Universiti Malaysia Terengganu
21030 Kuala Terengganu, Terengganu.

Tarikh: 5/5/08

11/5/08

Tarikh:

Ketua Jabatan Sains Marin

Cop Rasmi:

Nama: DR. RAZAK ZAKARIYA

Ketua Jabatan Sains Marin Falulti Pengajian Maritim dan Sains Marin Universiti Malaysia Terengganu

(UMT)

ACKNOWLEDGEMENT

First of all, thanks to Allah swt for giving me strength, patience, courage, determination and confidence to complete my thesis in time. Without His blessing, I would not have been successful in this endeavor.

Special thanks to Prof Dr Noor Azhar bin Mohamed Shazili for believing me and trusting me in handling my project. Indeed without his ideas and knowledge, correcting my grammar and continues support, I would never be able to complete my research properly. To Mr Joseph from INOS science officer, thank you very much for your encouragement, advice, and support throughout my research work.

Special thanks to Prof Noor master students especially to Adiana, Naz and Zurina for their guidance, and helping throughout my studies. Not forgetting as well all my friends who helped and supported me in term of enthusiasms to complete my research. My beloved family especially my parent that always prayed for my success and showed concern for me throughout my studies at the university. May God will bless them.

TABLE OF CONTENTS

CONTENT	S	PAGE
ACKNOWL	EDGEMENT	i
LIST OF TA	BLES	v
LIST OF FIG	GURES	vii
LIST OF AB	BREVIATIONS	viii
LIST OF AP	PENDICES	ix
ABSTRACT		x
ABSTRAK		xi
CHAPTER	1: INTRODUCTION	1
CHAPTER	2: LITERATURE REVIEW	3
1.1)	Bivalvia (Phylum Mollusc)	3
1.2)	Bivalve as Bioindicators for Heavy Metals Pollution	3
1.3)	Oysters (Crassostrea iredalei)	5
1.4)	Pollution in Marine Environment	6
1.5)	Heavy Metals	7
	2.5.1) Cadmium	7
	2.5.2) Lead	8
	2.5.3) Copper	8
	2.5.4) Manganese	10
	2.5.5) Zinc	11
2.6) 1	Heavy Metals and Human Health	11
2.7)	Factors Influence Metals Concentration	12
2.8) 1	Metals in Sediment	13

CHAPTER 3: METHODOLOGY	14
3.1) Sampling Location	14
3.2) Apparatus Preparation	15
3.3) Oysters, Sediment and Water Sampling	15
3.4) Samples Preparation	16
3.4.1) Oysters Sample Extraction and Acid Digestion	16
3.4.2) Seawater Metals Extraction Method	17
3.4.3) Sediments Metal Extraction Methods	17
3.5) Recovery Test	17
3.6) Blank	18
3.7) Calculation of Heavy Metals Content	18
3.8) Statistical Analysis	19
CHAPTER 4: RESULTS	
4.1) Analysis for Standard Reference Material (SRM)	20
4.2) Concentration of Heavy Metals in Oyster Tissue	22
4.3) Concentration of Heavy Metals in Sediments	26
4.4) Concentration of Heavy Metals in Water	28
4.5) Relationship Concentration of Heavy Metals in Oyster Tissue,	
Sediment and Water	30
4.6) Relationship Concentration of Heavy Metals in Oyster Tissue,	
Sediment and Water for July and December	34

CHAPTER 5: DISCUSSION 5.1) Heavy Metals Content in Soft Tissue of Crassostrea iredalei 38 5.2) Heavy Metals Content in Sediments 41 5.3) Heavy Metals Content in Surrounding Water 43 5.6) Relationship Concentration of Heavy Metals in Oyster Tissue, Sediment and Water 46 **CHAPTER 6: CONCLUSION** 49 REFERENCES 50 **APPENDICES** 53

64

CURICULUM VITAE

LIST OF TABLES

TABLE		PAGE
Table 4.1	Accuracy analysis test using DOLT-3 for oyster tissue	20
Table 4.2	Accuracy analysis test using MESS-3 for sediment	20
Table 4.3	Accuracy analysis test using spike method for water	21
Table 4.4	Concentration of heavy metals in oyster tissue for July sampling	22
Table 4.5	Concentration of metals in oyster tissue for December sampling	23
Table 4.6	Scientific result of concentration heavy metals in sediment for	
	July and December	24
Table 4.7	Correlation between metals concentration in oyster tissue	24
Table 4.8	Concentration of heavy metals in sediment for July sampling	26
Table 4.9	Concentration of heavy metals in sediment for December	
	Sampling	27
Table 4.10	Scientific result of concentration heavy metals in sediment for	
	July and December	27
Table 4.11	Correlation between metals concentration in sediment	28
Table 4.12	Concentration of heavy metals in water for July sampling	30
Table 4.13	Concentration of heavy metals in water for December sampling	31
Table 4.14	Scientific result of concentration heavy metals in water for	
	July and December	31
Table 4.15	Correlation between metals concentration in water	32
Table 4.16	Correlation of heavy metals content in oyster tissue and sediment	34
Table 4.17	Correlation of heavy metals content in oyster tissue and water	34
Table 4.18	Correlation of heavy metals content in oyster tissue and	
	sediment for July sampling	35

Table 4.19	9 Correlation of heavy metals content in oyster tissue and wate	
	for July sampling	35
Table 4.20	Correlation of heavy metals content in oyster tissue and sediment	
	for December sampling	36
Table 4.21	Correlation of heavy metals content in oyster tissue and water	
	for December sampling	36

LIST OF FIGURES

FIGURE		PAGE
Figure 3.1	Sampling stations at Setiu Lagoon Terengganu.	14
Figure 4.1	Concentration of Cd, Mn, Cu and Pb in oyster tissue for July	
	and December.	25
Figure 4.2	Concentration of Zn in oyster tissue for July and December.23	
Figure 4.3	Concentration of Cd, Mn, Cu, Zn and Pb in sediment for July	
	and December.	25
Figure 4.4	Concentration of Cd, Mn, Cu and Pb in water for July and	
	December.	33
Figure 4.5	Concentration of Zn in water for July and December.	33
Figure 5.1	Correlation of Cd - Cu and Zn - Cu in oyster tissue	39
Figure 5.2	Correlation of Mn - Zn and Zn - Pb in sediment	41
Figure 5.3	Correlation of Zn - Cd and Cu - Mn in water	44
Figure 5.4	Strong positive ($r = 0.650$) relationship of Zn ($p < 0.05$) in	
	oyster tissue and water	45
Figure 5.5	Strong negative relationship ($r = -0.816$) ($p < 0.05$) of Cu in	
	oyster tissue and sediment for July sampling	46
Figure 5.6	Strong positive relationship ($r = 0.727$) ($p < 0.05$) of Cd in	
	oyster tissue and water for July sampling	46
Figure 5.7	Strong negative relationship ($r = -0.825$) ($p < 0.05$) of Mn in	
	oyster tissue and sediment for December sampling	47
Figure 5.8	Strong positive relationship ($r = 0.848$) ($p < 0.05$) of Zn in	
	oyster tissue and water for December sampling	47

LIST OF ABBREVIATION

SYMBOLS MEANING Gram g °C Degree Celcius Percentage % L Litre Mg Miligram Ml Mililitre Cd Cadmium Mn Manganese Cu Copper Zn Zinc Pb Lead $\mu g/g$ Microgram per gram Part per million ppm Part per thousand ppt More than < Less than HNO₃ Nitrite acid HCL Hydrochloric acid

LIST OF APPENDICES

APPENDICES	PAGE
1) Materials Needed	
a) Apparatus	52
b) Chemicals	53
2) One way ANOVA for heavy metals content in tissue of Crassostrea iredalei	
on July and December	54
3) One way ANOVA for heavy metals content in sediment on July and December	54
4) One way ANOVA for heavy metals content in water on July and December	55
5) Pearson Correlation of heavy metals content in oyster tissue and sediment	55
6) Pearson Correlation of heavy metals content in oyster tissue and water	56
7) Correlation of heavy metals content in oyster tissue, sediment and water	
for July sampling	58
8) Correlation of heavy metals content in oyster tissue, sediment and water	
for December sampling	59
9) Correlation of paired metals concentration in water	62
10) Correlation of paired metals concentration in sediment	63
11) Correlation of paired metals concentration in oyster tissue	63

ABSTRACT

Heavy metals pollution in aquatic environments known as a major problem contributed to human health risks. The studies on this pollutant through bioindicators organisms such oyster from species Crassostrea iredalei is important to control their sources and to manipulate the pollutants. The concentrations of Cd, Mn, Cu, Zn and Pb in tissue of Crassostrea iredalei, sediment and surrounding water was measured and the data was analysed using one way ANOVA and correlation test to detect the relationship between sampling periods and between oyster tissue, sediment and water. The highest concentration of metals in oyster tissue was Zn (940.65 \pm 531.4 μ g/g), followed by Cu $(40.08 \pm 24.35 \,\mu\text{g/g})$, Mn $(22.56 \pm 42.72 \,\mu\text{g/g})$, Cd $(2.42 \pm 1.46 \,\mu\text{g/g})$ and Pb $(1.15 \pm 2.97 \,\mu\text{g/g})$ μg/g). Concentrations of Cd, Cu and Zn were exceeded the maximum level allowed according to Food Act 1983. Metals in sediment were dominated by Mn (381.78 ± $237.56 \mu g/g$) and Zn $(41.04 \pm 17.24 \mu g/g)$, others were Pb $(20.66 \pm 8.95 \mu g/g)$, Cu $(7.02 \pm 1.04 \pm$ 2.49 μ g/g) and Cd (0.41 \pm 0.12 μ g/g). Concentrations of heavy metals in surrounding water were Zn (300.96 \pm 492.08 μ g/L), Pb (14.49 \pm 19.75 μ g/L), Cu (6.97 \pm 8.61 μ g/L), Mn (5.43 \pm 5.94µg/L), Cd (1.96 \pm 2.44 µg/L). There was no correlation between metal concentration in oyster tissue and in sediment for all five metals. Otherwise only Zn represented strong positive (r = 0.650) (p < 0.05) relationship in oyster tissue and surrounding water.

KAJIAN KANDUNGAN LOGAN BERAT (Cd, Mn, Cu, Zn, Pb) DALAM TISU LEMBUT TIRAM (*Crassostrea iredalei*) DI KAWASAN SETIU LAGUN, TERENGGANU

ABSTRAK

Pencemaran logam berat di persekitaran akuatik merupakan masalah utama yang boleh menyumbang kepada risiko kesihatan manusia. Kajian terhadap bahan pencemar ini melalui organisma penunjuk seperti tiram dari spesis Crassostrea iredalei adalah penting untuk mengawal puncanya dan menguruskannya dengan berkesan. Kepekatan logam Cd. Mn, Cu, Zn dan Pb dalam tisu Crassostrea iredalei, endapan dan air diukur dan data dianalisis menggunakan ANOVA sehala dan ujian kolerasi untuk mengesan perhubungan diantara tempoh persempelan dan diantara tisu tiram, endapan dan air. Kepekatan logam Zn $(940.65 \pm 531.4 \,\mu\text{g/g})$ adalah paling tinggi dalam tisu tiram, diikuti dengan Cu (40.08 $\pm 24.35 \,\mu g/g$), Mn (22.56 $\pm 42.72 \,\mu g/g$), Cd (2.42 $\pm 1.46 \,\mu g/g$) dan Pb (1.15 $\pm 2.97 \,\mu g/g$). Kepekatan logam dalam endapan didominasi oleh Mn (381.78 ± 237.56 μg/g) diikuti dengan Zn (41.04 \pm 17.24 μ g/g), Pb (20.66 \pm 8.95 μ g/g), Cu (7.02 \pm 2.49 μ g/g) dan Cd $(0.41 \pm 0.12 \,\mu\text{g/g})$. Manakala kepekatan logam didalam air seperti berikut; Zn (300.96 ± 492.08 μ g/L), Pb (14.49 ± 19.75 μ g/L), Cu (6.97 ± 8.61 μ g/L), Mn (5.43 ± 5.94 μ g/L), Cd $(1.96 \pm 2.44 \,\mu g/L)$. Ujian korelasi menunjukkan tiada perhubungan diantara kandungan logam dalam tisu tiram dan dalam endapan. Manakala hanya Zn menunjukkan korelasi positif yang kuat (r = 0.650) (p < 0.05) didalam tisu tiram dan air.