LANDULED (RUP) SEITPERNE LINNESPER DER TYPERLERU, FOITGEN SEEN SERVICES (RUP) OF TRANSPERSE SERVICES (RUP) SER EUROPEN SERVICES (RUP) SERVICE

nne sie72 Byd Pini

FAGULTY OF MARKUME STUDIES AND MARKE SQUINGE UNIVESITI MALAYSIA TERENGGANU LP 38 FMSM 2 2007

Assessment of apparent optical properties (AOP) of total suspended sediments (TSS) in Kuala Terengganu coastal waters / Nur Hafiza Ramli.

PERPUSTAKAAN SULTANAH NUR ZAHIRAH UNIVERSITI MALAYSIA TERENGGANU (UMT)

21030 KUALA TERENGGANU				
	1000543	66		
		()		
		7.		

Lihat sebelah

HAK HILL PERPUSTAKAAN SUETANAH NUR ZA.HRAS UIT!

ASSESSMENT OF APPARENT OPTICAL PROPERTIES (AOP) OF TOTAL SUSPENDED SEDIMENTS (TSS) IN KUALA TERENGGANU COASTAL WATERS

By

Nur Hafiza Binti Ramli

Research Report submitted in partial fulfillment of the requirement for the degree of Bachelor of Science (Marine Science)

Department of Marine Science Faculty of Maritime Studies and Marine Science UNIVERSITI MALAYSIA TERENGGANU 2007

This project report should be sited as follows:

Nur Hafiza. R. 2007. Assessment of Apparent Optical Properties of Total Suspended Sediments in Kuala Terengganu Coastal Waters. Undergraduate Thesis, Bachelor of Science (Marine Science). Faculty of Maritime Studies and Marine Science. University of Malaysia Terengganu. 80pp

No part of this project report may be reproduced by any mechanical, photographic, or electronic process, or in the form of phonographic recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use, without written permission from the author and the supervisor(s) of the project.

JABATAN SAINS MARIN FAKULTI PENGAJIAN MARITIM DAN SAINS MARIN UNIVERSITI MALAYSIA TERENGGANU

PENGAKUAN DAN PENGESAHAN LAPORAN PROJEK PENYELIDIKAN I DAN II

Adalah ini diakui bahawa laporan penyelidikan bertajuk:

Assessment of Apparent Optical Properties of Total Suspended Sediments In Kuala Terengganu Waters.

Oleh Nur Hafiza Binti Ramli No. Matrik: UK 9905

telah diperiksa dan semua pembetulan yang disarankan telah dilakukan. Laporan ini dikemukakan kepada Jabatan Sains Marin sebagai memenuhi sebahagian daripada keperluan memperolehi ijazah.Sarjana Muda Sain Samudera Fakulti Pengajian Maritim dan Sains Marin, Universiti Malaysia Terengganu.

Disahkan oleh:

Penyelia utama

Nama: Mohd Suffian Bin Idris

Cop Rasmi:

MOHD SUFFIAN IDRIS Pensyarah Institut Oseanografi Universiti Malaysia Terengganu (UMT) 21030 Kuala Terengganu Terengganu

Ketua Jabatan Sains Samudera

Nama: DR. RAZAK ZAKARIYA

Ketua Jabatan Sains Marin
Cop Rasfirit. Pengajian Maritim dan Sains Marin
Universiti Malaysia Terengganu
(UMT)

Tarikh: 6/6/0 7

Tarikh: 24/5/07

DEDICATION:

THIS THESIS IS DEDICATED TO ALL PEOPLE WHO IS INTERESTED IN REMOTE SENSING STUDIES AND SPEACIALLY TO MY PARENTS, BROTHERS, SISTERS AND NOT TO FORGET TO MY DEAREST ONE WHO ALWAYS LENDING ME A HAND. THANK YOU FOR ALL OF YOUR SUPPORTS AND ENCOURAGEMENTS.

ACKNOWLEDGEMENT

بسم الله الرحمن الرحيم

"In the name of Allah, Most Gracious and Most Merciful"

I am grateful to Almighty who has given the full blessings for me to finish this final project. My thanks go foremost to beloved mother, Madam Wan Rahimah, my father, Mr Ramli and my wonderful siblings who always supported me.

I would like to take this opportunity to thank to my best supervisor Mr Mohd Suffian b Idris for his guidance and in helping me to accomplish this project. I am grateful to him as he always gives many comments and suggestions that helped me a lot. In fact, I would like to thank him especially for his patience, caring and understanding personality.

Besides that, I would like to thank Mr Nasir and my colleagues who helped me during the sampling. Not to forget to my friends, my coursemates and those who helped directly and indirectly. Many of you people, thank you a lot!

TABLE OF CONTENTS

Acknowledger	nent		i
Table of conte	ents		ii
List of Tables			ν
List of Figure.	S		vii
List of Append	dices		x
List of Abbrev	riations		xii
Abstract			xiv
Abstrak			xvi
Chapter 1: IN	TROD	UCTION	
1.1	Backg	round of study	1
	1.1.1	Coastal waters	1
	1.1.2	Classification of coastal waters	1
	1.1.3	In-water optical properties	2
1.2	Import	tance of study	3
1.3	Object	ives	4

Chapter 2: LITERATURE REVIEW

2.	Remote sensing reflectar	Remote sensing reflectance		
2.	2 Diffuse attenuation coeff	Diffuse attenuation coefficient		
2.	Suspended solids		9	
Chapter 3	: METHODOLOGY			
3.	Description of study area	as	10	
3.	2 In situ measurement		11	
	3.2.1 Water sample co	ollection	11	
	3.2.2 Radiometric mea	asurement	11	
3.	Water analysis		12	
3.	4 Data analysis		12	
Chapter 4	: RESULT			
4.	1 The observation of sky of	condition	14	
4.	2 Hydrographic measurem	nent	16	
4.	Water clarity		18	
4.	4 TSS Concentration	*	20	
4.	5 Remote Sensing Reflect	tance	22	
4.	6 Diffuse attenuation coef	fficient	28	
4.	7 Relationship between A	OP and TSS concentration	33	
	4.7.1 Reflectance vers	sus TSS concentration	33	

4.7.2 Diffuse attenuation coefficient	38
Chapter 5: DISCUSSION	44
Chapter 6: CONCLUSION	49
REFERENCES	51
APPENDICES	55

LIST OF TABLES

TABLES		P	PAGE
Table 4.1	:	The observation of sky conditions, wind speeds measurement and the coordinate of each station	15
Table 4.2	ì	Recorded data of hydrographic measurement	17
Table 4.3	:	Concentration of TSS, [TSS]	20
Table 4.4	ž	The average of remote sensing reflectance of different in-water constituents for station 1 to station 4	23
Table 4.5	:	The average of remote sensing reflectance of different in-water constituents for station 5 to station 8	24
Table 4.6	:	The average of remote sensing reflectance of different in-water constituents for station 9 to station 12	25
Table 4.7	ŧ	The average of remote sensing reflectance of different in-water constituents for station 13 to station 17	26
Table 4.8	:	The average of remote sensing reflectance of different in-water constituents for station 18 to station 22	27
Table 4.9	:	The average of the diffuse attenuation coefficient values of different in-water constituents for station 1 to station 4	29
Table 4.10	:	The average of the diffuse attenuation coefficient values of different in-water constituents for station 5 to station 8	30
Table 4.11	:	The average of the diffuse attenuation coefficient values of different in-water constituents for station 9 to station 12	30
Table 4.12	;	The average of the diffuse attenuation coefficient values of different in-water constituents for station 13 to station 18	3 31
Table 4.13	t	The average of the diffuse attenuation coefficient values of different in-water constituents for station 19 to station	32

Table 4.14	:	The correlation values from the regression analysis between remote sensing reflectance and TSS concentrations	33
Table 4.15	•	The correlation values from the regression analysis between the values of diffuse attenuation coefficient and TSS concentrations	38

LIST OF FIGURES

FIGURES		P	PAGE
Figure 2.1	:	Satlantic underwater sensor	8
Figure 3.1	:	The targeted areas of study	10
Figure 4.1	:	The values of diffuse attenuation coefficient of PAR in reverse meter for 22 stations	18
Figure 4.2	:	The values of ZEU in reverse meter for 22 stations	19
Figure 4.3	í	The graph of TSS concentration according to each station	20
Figure 4.4	1	Percentage of remote sensing reflectance versus wavelength	1 22
Figure 4.5	•	The curves represent the percentage of remote sensing reflectance versus wavelength between four stations (station 1- station 4)	23
Figure 4.6	:	The curves represent the percentage of remote sensing reflectance versus wavelength between four stations (station 5- station 8)	24
Figure 4.7	ŧ	The curves represent the percentage of remote sensing reflectance versus wavelength between four stations (station 9- station 12)	25
Figure 4.8	÷	The curves represent the percentage of remote sensing reflectance versus wavelength between four stations (station 13- station 17)	26
Figure 4.9	i	The curves represent the percentage of remote sensing reflectance versus wavelength between four stations (station 18- station 22)	27
Figure 4.10	:	Diffuse attenuation coefficient versus wavelength	28

Figure 4.11	1	The curves represent the diffuse attenuation coefficient values versus wavelength between four stations (station 1- station 4)	29
Figure 4.12	į.	The curves represent the diffuse attenuation coefficient values versus wavelength between four stations (station 5- station 8)	29
Figure 4.13	<i>t</i>	The curves represent the diffuse attenuation coefficient values versus wavelength between four stations (station 9- station 12)	30
Figure 4.14	Ĭ	The curves represent the diffuse attenuation coefficient values versus wavelength between four stations (station 13 – station 18)	31
Figure 4.15	:	The curves represent the diffuse attenuation coefficient values versus wavelength between four stations (station 19 – station 22)	31
Figure 4.16	:	The percentage of remote sensing reflectance (R_{rs}) versus the concentration of TSS ([TSS]) for wavelength 412nm	33
Figure 4.17	:	The percentage of remote sensing reflectance (R_{rs}) versus the concentration of TSS ([TSS]) for wavelength 440nm	34
Figure 4.18	i	The percentage of remote sensing reflectance (R_{rs}) versus the concentration of TSS ([TSS]) for wavelength 490nm	34
Figure 4.19	;	The percentage of remote sensing reflectance (R_{rs}) versus the concentration of TSS ([TSS]) for wavelength 510nm	35
Figure 4.20	:	The percentage of remote sensing reflectance (R_{rs}) versus the concentration of TSS ([TSS]) for wavelength 532nm	35
Figure 4.21	;	The percentage of remote sensing reflectance (R_{rs}) versus the concentration of TSS ([TSS]) for wavelength 555nm	36
Figure 4.22	:	The percentage of remote sensing reflectance (R_{rs}) versus the concentration of TSS ([TSS]) for wavelength 650nm	36
Figure 4.23	;	The percentage of remote sensing reflectance (R_{rs}) versus the concentration of TSS ([TSS]) for wavelength 675nm	37
Figure 4.24	:	The percentage of remote sensing reflectance (R_{rs}) versus the concentration of TSS ([TSS]) for wavelength 715nm	37

Figure 4.25	:	The values of diffuse attenuation coefficient (K_d) versus the concentration of TSS ([TSS]) for wavelength 412nm	38
Figure 4.26		The values of diffuse attenuation coefficient (K_d) versus the concentration of TSS ([TSS]) for wavelength 440nm	39
Figure 4.27	:	The values of diffuse attenuation coefficient (K_d) versus the concentration of TSS ([TSS]) for wavelength 490nm	39
Figure 4.28	:	The values of diffuse attenuation coefficient (K_d) versus the concentration of TSS ([TSS]) for wavelength 510nm	40
Figure 4.29	:	The values of diffuse attenuation coefficient (K_d) versus the concentration of TSS ([TSS]) for wavelength 532nm	40
Figure 4.30	:	The values of diffuse attenuation coefficient (K_d) versus the concentration of TSS ([TSS]) for wavelength 555nm	41
Figure 4.31	:	The values of diffuse attenuation coefficient (K_d) versus the concentration of TSS ([TSS]) for wavelength 650nm	41
Figure 4.32	;	The values of diffuse attenuation coefficient (K_d) versus the concentration of TSS ([TSS]) for wavelength 676nm	42
Figure 4.33	;	The values of diffuse attenuation coefficient (K _d) versus the concentration of TSS ([TSS]) for wavelength 715nm	42

LIST OF APPENDICES

APPENDICES	P	AGE
Appendix 1: Table of TSS concentration and remote sensing reflectance (for 9 wavelengths) from station 1 to station 22		55
Appendix 2: Table of TSS concentration and diffuse attenuation coefficient (for 9 wavelengths) from station 1 to station 22		56
Appendix 3: The percentage of remote sensing reflectance for station 1 to station 4		57
Appendix 4: The percentage of remote sensing reflectance for station 5 to station 8		58
Appendix 5: The percentage of remote sensing reflectance for station 9 to station 12		59
Appendix 6: The percentage of remote sensing reflectance for station 13 to station 16		60
Appendix 7: The percentage of remote sensing reflectance for station 17 to station 20		61
Appendix 8: The percentage of remote sensing reflectance for station 21 to station 22		62
Appendix 9: The diffuse attenuation coefficient values for station 1 to station 4		63
Appendix 10: The diffuse attenuation coefficient values for station 5 to station 8		64
Appendix 11: The diffuse attenuation coefficient values for station 9 to station 12		65
Appendix 12: The diffuse attenuation coefficient values for station 13 to station 18		66

Appendix 13: The diffuse attenuation coefficient values for station 19 to station 22	67
Appendix 14: The data of remote sensing reflectance for every wavelength (350nm – 800nm) from station 1 to station 22	68
Appendix 15: The data of diffuse attenuation coefficient for every wavelength (350nm – 800nm) from station 1 to station 22	73
Appendix 16: The types of trends of Rrs percentage versus wavelength for several stations	78

LIST OF ABBREVIATIONS

SYMBOL

DEFINITION

AOP Apperent Optical Properties Coloured Dissolved Organic Matter **CDOM** $E_{\rm d}(0^+,\lambda)$ Incident irradiance $E_{\rm d}(0^{-},\lambda)$ Downwelling irradiance IOP **Inherent Optical Properties** Diffuse attenuation coefficient K_d $L_{\rm u}\left(0^{+},\lambda\right)$ Upwelling radiance on surface Upwelling radiance below surface $L_{\rm u}\left(0^{-},\lambda\right)$ $L_{\mathbf{w}}(\lambda)$ Water leaving reflectance NTU Nepholometric Turbidity Unit **PAR** Photosynthetic Active Radiance R_{rs} Remote sensing reflectance R_{rs} (%) Percentage Remote sensing reflectance TSS **Total Suspended Sediment** Concentration of TSS [TSS] Depth (m) Z Fresnel reflectance index of seawater ρ

(0.021)

 $\eta_{\rm W}$

Fresnel refractive index of seawater (1.345)

α

Fresnel reflection albedo of sun and sky (0.043)

ABSTRACT

The field of remote sensing can be used to determine the distribution of different types of constituents in seawater such as chlorophyll-a, Coloured Dissolved Organic Matter (CDOM) and Total Suspended Sediments (TSS). In this research, the measurements of Apparent Optical Properties (AOP) parameters such as R_{rs} and K_d have been conducted and their relationship with TSS were investigated. 22 stations along Kuala Terengganu coastal waters were chosen as the sites of study. The in-situ observations were carried out between 14^{th} and 17^{th} of September 2006. The in-situ data of radiometric measurements ($E_d(0^+)$ and $L_u(0^+)$) were processed using the Prosoft 7.78 software to derive AOP parameters (R_{rs} and K_d). For each station, water samples were collected to measure the concentration of TSS. The regression analyses were done between the concentration of TSS and AOP parameters in order to determine the relationship between them. The regression analysis revealed that the TSS can be best estimated at 675 nm wavelength of R_{rs} and 532 nm wavelength of K_d . Results obtained suggest that in-situ measurement of AOP parameters are potentially valuable to develop site-specific algorithms for estimating TSS concentration through remotely sensed optical data.

ABSTRAK

Bidang penderiaan jauh boleh digunakan untuk menentukan pelbagai konstituen yang terdapat dalam air laut seperti taburan klorofil-a, Bahan Organik Terlarut (CDOM) dan Jumlah Pepejal Terampai (TSS). Dalam kajian ini, pengukuran parameter Ciri-ciri Optik Nyata (AOP) seperti Pantulan Penderiaan Jauh (R_{rs}) dan Pekali Pelemahan Cahaya (K_d) telah dilakukan dan hubungan antara kedua-duanya dengan kepekatan TSS dikaji. 22 stesen di perairan Kuala Terengganu telah dipilih sebagai kawasan kajian ini. Pemerhatian 'in-situ' dijalankan antara 14 dan 17 September 2006. Data 'in-situ' pengukuran radiometrik $(E_d(0^+))$ dan $L_u(0^+)$ diproses menggunakan perisian Prosoft 7.78 untuk mendapatkan parameter AOP (R_{rs} and K_d). Sampel air bagi setiap stesen telah diambil untuk mengetahui kepekatan TSS yang terdapat di dalam air laut. Kemudiannya, analisis regresi dilakukan antara kepekatan kandungan TSS di dalam air dan data parameter AOP untuk mencari perhubungan antara kedua-duanya. Analisis regrasi menunjukkan TSS dapat ditentukan pada 675 nm panjang gelombang untuk R_{IS} dan 532 nm panjang gelombang untuk K_d. Keputusan yang diperolehi dapat menerangkan bahawa pengukuran 'in-situ' parameter AOP berpotensi untuk menghasilkan 'site-specific algorithms' dalam menentukan kepekatan TSS melalui data optik secara penderiaan jauh.