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COMPARISON OF THE RIEMANN INTEGRAL AND 

LEBESGUE INTEGRAL 

ABSTRACT 

The development of the integral is most introductory analysis course is centered 
almost exclusively on the Riemann integral. In this historical development the 
integration is simply introduced as finding the area under a curve. The Riemann 
integration is a basic concept in mathematical analysis, since it related to boundedness, 
continuity and differentiability. We also consider some integrals of Stieltjes types 
which are considered as generalization of the Riemann Integrals which involves two 
bounded functions. The Stiltjes integral has very useful applications in probability 
theory, mechanics as well as theoretical physics. Another theory of integration more 
general than the Riemann theory was called Lebesgue integral, it consider the concept 
of measure of a set, starting with simple function and ending with measurable function, 
this approach leads to greater generality in the types of function that can integrated. 
We will compare both of this integration by using their theorem. 
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PERBANDINGAN ANT ARA PENGAMIRAN RIEMANN 

DAN PENGAMIRAN LEBESGUE 

ABSTRAK 

Dalam bidang analisis, kamiran Riemann adalah pendahuluan yang paling istimewa 
dalam perkembangan pengamiran. Dalam perkembangan lepas, pengamiran hanya 
semata-matanya untul memperkenalkan mencari luas dibawah satu lengkumg. 
Kamiran Riemann adalah konsep asas dalam analisis matematik, ia dikaitkan dengan 
keterbatasan, keselanjaran, dan kebolehbezaan. Kita juga menimbangkan sesetengah 
kamiran iaitu model Stieltjes di mana mengangap sebagai generalisasi daripada 
kamiran Rieamann dimana ia melibatkan dua fungsi batas. Stieltjes sangat berguna 
dalam aplikasi dalan1 teori kebarangkalian, mekanik seperti berdasarkan teori fizik. 
Theori pengamiran yang seturusnya adalah lebih umum daripada kamiran Riemann 
adalah dinamakan sebagai kamiran Lebesgue, ia dipertimbangkan sebagai konsep 
pengukuran suatu set, dimulakan dengan :fungsi mudah dan measurable fungsi 
sebagai pengakhiran, pencapaian ini memimpin kamiran yang lebih baik untuk 
pelbagai fungsi. Kita akan membandingkan kedua-dua pengamiran tersebut dengan 
mengguankan prinsip yang telah dibuktikan secara logik. 
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CHAPTER 1 

INTRODUCTION 

The tem1 of the integration will not meaning finding whose derivatives is 

known. This process will be referred to as '·antidifferentiation'·. Thus a function/is an 

antiderivatives off', and when the domain off is an interval, any other antiderivatives 

off' must be of the form f +C, where C is a constant function. Under certain broad 

con4itions, the integral of a fw1ction can be evaluated via its antiderivatives. 

1.1 Introduction of the Riemann Integral 

The Riemann integration is a basic concept in mathematical analysis, since it 

related to bonndedness, continuity and differentiability. The Riemann integral was 

started from the following problem. 

The problem of finding the area of a phme region bounded by vertical lines 

x=a and x=b, the horizontal line y=O, and the graph of the non-negative fm1ction 

y=f(x), is a very old one. The Greeks has a method which they applied successfully to 

simple cases such as y = x 2
• This "method of exhaustion"' consisted essentially in 

approximating the area by figures whose areas were known as rectangles and triangles.

Then an appropriated limit was taken to obtain the result.



In the 1 i11 century, Newton and Leibnitz independently found an easy method 

for solving the problem, both consider integration as the inverse operation of 

differentiation. For example, in the De analysis, Newton proved that the area under the 
ml n+I 

curve y = ax
mtn (ml n� -1) is given by anx by using his differential calculus 

m+n 

to prove that if A{-Y) represents the area from Oto x the� A'(x) = ax1111
". Even though 

Leibniz arrived at the concept of the integral by using sums to compute the area, 

integration itself was always the inverse operation of differentiation. The definite 

integral of a function f(x) on [a, b], denoted by f f(x)dx and the area is given by 

F(b)-F(a), where Fis an antiderivative off This is the familiar Fundamental Theorem 

of Calculas; it reduced the problem of finding areas to that of finding antidrivatives. 

Its attention was focused on the inverse character of differentiation and techniques of 

evaluating both definite and indefinite integrals. This remained the definition of the 

definite integral until the 1820s. 

Eventually mathematicians began to worry about the function not having 

antiderivatives. \\Then that happened, they were forced to return again to the basic 

problem of area. At the same time, it becomes clear that a more precise formulation of 

the problem is necessary. Exactly what is area, anyway? Or more generally, how can 
h 

f f(x)dx- be defined rigorously for all continuous functions? This was approach to 

integration is due to Cauchy, who was the first mathematicians to construct a theory of 

integration based on approximating the area under the curve. By Cauchy's first 

method, and then for functions that may have a finite number of discontinuities at 

which the function is w1bounded, by Cauchy's second method. Cauchy's first method 

can be applied to all continuous functions, all bounded functions with finitely many 

discontinuities, and it can be applied to some bow1ded functions with infinitely many 

discontinuities. 
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In the middle of the 19111 century, Cauchy and Riemann put the theory of 

integration on a finn footing. They described that at least theoretically on how to cru.Ty 

out the programs of the Greeks for any function f The result was the definition of 

what is now called the Riemann integral off The Riemann integral, proposed by 

Georg Bernhard Riemann (1862-1866), is a broadly successful attempt to provide 

such as foundation for the integer. Riemann was led to the development of the integral 

by trying to chru.·acterize which functions were integrable according to Cauchy's 

definition. In the process, he modified Cauchy's definition and developed the theory 

of integration that bears his name. One of his achievements was providing necessary 

and sufficient conditions for a real-value bounded function to be integrable. 

Riemann's definition starts with the construction of a sequence problem, and gives 

useful results for many other problems. The w1bounded functions that are extended by 

Cauchy, the concept were resulted in a complete and formal expression as a limit of 

the certain sum. He concluded that function which is not covered by Dirichlet does not 

exist in nature. But there were new applications of trigonometric series to number 

theory and other places in pme mathematics. This provided impetus to pursue these 

foundational questions. Bernhard Riemann assumed that 

Where P is a partition of [ a, b] with o
i 
the length of the subintervals and the D, are 

conesponding oscillates of f(,'C): 

Di =I SUP.rel /(x) - inf '"1 f(x) I 

For a given Pando> 0, define 

S = s(P,5) = L5,. 
l)i>r' 
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The Riemann-Stieltjes integral, proposed were developed by Thomas-Jean 

Stieltjes (1856-1894) and arise in many applications in both mathematics and physics. 

The general Riemann-Stieltjes integral that will give meaning of the following types 

of integrals: 

; h 

f f(x)cfr2 , f f(x)d[x] · or f f(x)da(x) 
a 

where a is a monotone increasing function on [ a, b]. The Riemann-Stieltjes integral 

pe1mits the expression of many seemingly diverse results as a single formula. 

The beginning of this century saw the development of the notion of the 

measure of a set of real numbers that paved the way to the foundations of the modern 

theory of the Lebesgue integral. Now was the evitable generalization of the Riemann 

integral. 

1.2 Introduction of the Lebesgue Integral 

The Lebesgue integral using the concept of measure plays an important role in 

the branch of mathematics called real analysis and in many other fields in the 

mathematical sciences. On the real line, the idea of measure generalizes the length of 

an interval, in the plane, the area of a rectangle, and fotih, this links us to measure of a 

set. It allows us to talk about the measme of a set in the same way that we talk about 

the length of an interval. The development of the Riemann integral of a bounded 

function on a closed and bounded interval depend on the pruiitioned [a. b] into interval.

But the time of Riemann there was only an imperfect tmderstru1ding of sets of real 

numbers and so it did not occur to Riemann that the prope1iy of Riemann integrability 

for a bounded function/ depended exclusively on the nature of the set of points of 

discontinuity off The notion of measure ,md measurable set play a prominent role in 

the development in the Lebesgue integral in that we pru·titioned [ a. b] not into interval, 

instead into pairwise disjoint measurable sets. 
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The Lebesgue integral is named from Henri Lebesgue (1875-1941), a French 

mathematicians, who introduced and complete the theorem by using the notion of a set 

of measure zero which is the integral in (Lebesgue 1904) and defined measure of 

subsets of the line and the plane, as well as the Lebesgue integral of a nonnegative 

function. The tenn "Lebesgue integration" may refer either to the general theory of 

integration of a function with respect to a general measure, as introduced by Lebesgue, 

or to the specific case of integration of a function defined on a sub-domain of the real 

line with respect to Lebesgue measure. Like Riemann, Lebesgue was led to the 

development of his theory of integration while searching for sufficient condition on a 

function/for which the integrals defining the Fourier coefficients off exists. 

In mathematics, the integral of a non-negative function can be regarded in the 

simplest cases as the area between the graph of that function and the x-axis. Lebesgue 

integration is a mathematical construction that extends the integral to a larger class of 

function. It also extends the domains on which these functions can be defined. It has 

long been understood that for non-negative function with continuous functions on 

closed bounded interval graph, the area under the curve could be defined as the 

integral. However, as the need to consider more irregular functions arose it became 

clear that more careful approximation techniques would be needed in order to define a 

suitable integral. 

Lebesgue was exhibited a trigonometric series that converges everywhere to a 

nonnegative function f that was not Riemann integrable. The function f, however, is 

integrable according to Lebesgue's definition and the trigonometric series is the 

Fourier series off Lebesgue's theory of integration allows us to prove interchange of 

limit and integrations theorems without requiring unifonn convergence of the 

sequence of functions. 
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1.3 Problem Declaration 

Although the Riemann integral suffices in most daily situation, it fails to meet 

our needs in several important ways. First, the class of Riemann integrable functions 

is relatively small. Second and related to the first, the Riemann does not have 

satisfactory limits properties. That is, given a sequence of Riemann integrable function 

u;,} with a limit function f = lim
n
-Ho I

n
' it does not necessarily follow that the limit 

function f is Riemann integrable. Lastly, pru1itioning the range of a function and 

counting the resultant rectangles becomes tricky since we must employ some way of 

determining how much of the domain is sent to a particular portion of a partition of 

the range. 

1.4 Research Objective 

The objective of this final year project is to: 

1. Compare the difference between Riemann integral and Lebesgue integral.

11. A direct theory of the Riemam1 and Lebesgue integral also need to develope.

m. By compare both of the integral, we must consider the interval and the

convergence of the function.

1v. Aside from exrunining the convergence properties of the Lebesgue integral, we 

are also interest in how it behaves relative to the Riemann integral. 

1.5 Scope Research 

The Riemann integral simply introduced as finding the area 1mder a curve it 

related to boundedness, continuity and differentiability. We also consider the 

Riemann-Stieltjes which involves two bounded functions. Rather than partitioning the 

domain of the function, as in the Riemann integral, we use the Lebesgue to partition 

the range. Thus, for each interval in the partition. rather than asking for the value of 

the function between the end points of the interval in the domain, how much of the 

domain is map by the function to some value between two ends point in the rru1ge is 

consider. Aside from exan1ining the convergence properties of the Lebesgue Integral, 

we ru·e also interested in how it behaves relative to the Riemrum Integral. 

6 



CHAPTER2 

LITERATURE REVIEW 

According to the Cerone, P and Dragomir, S (2008) had already proved that 

the approximating of the Riemann-Stieltjes integral via some moments of the 

integrand. It struted from the simple expression of the Riemann-Stieltjes integral 

f f(t)du(t) was that u(b)-u(a) f f(t)d(t) 
b-a

when it existed then 

1 ID(f,u;a,b)l�-L(M-m)(b-a) held. L-Lipschitzian of the integrand f of the
2 

Riemann integral was I u(t)-u(s) I� LI t -s I for eacht.s E [a,b]. The expression that 

contained the function}: p [u(b).
6

f
(t-a) 1'-1 f(t)dt-u(A).

6

f
(b-t)P-1f(t)dtl of 

(b-a)P ., 
. 

., 

the integral exists where p>o and this general result could be proved by the integration

by part. For the further bounds for monotonic integrand. the integrator f was 

monotonic non-decreasing for the error functional F(f.u,p;a,b). At last approximating 

the finite Fourier transfo1m off: [a,b]-+ R on the finite interval [a, b] and.f{g) was 

F(t) := f f(s)e-2
mis to provide a composite rule in approximating the Finite Fourier 

Transform in terms of moments for the function/ and the quadrature mle. 



Jack, G (2007) had introduced Random Riemann Integral. It could be done by 

using Riemann swns which is random variables. However, the idea of the random 

Riemann integral came from the first return integral. It was a sequence of real 

nwnbers that dense in the w1it interval and belonged to the first return points of the 

interval. This integral was fwther considered as random variables. it followed the 

Lebesgue measurable function, f from the unit interval I:= [OJ] into R. For the

Random Riemann swn.s, it could be defined the Random Riemann sums off on P if

the integral exists. And it was used that EL I x k I P= LI I k I p-t . fl f ( sl p I p-i fl f ( .
r, 

The Random Riemann sums of a function converged in probability to its Lebesgue 

integral would give a sequence of pa11itions whose size tended to zero. The 

convergence of the function depended on the size of the partition in the sequences but 

it was used a different constmction to choose the random points. This almost proved 

the almost sure convergence of random Riemann sums to the Lebedgue integral. 

Enrigue, A ( 1986) developed a very direct theory of the Lebesgue Integral with 

the title of The Lebesgue Integral as a Riemann Integral. A general definition of the 

Lebesgue Integral is preceded by definitions for simple fw1ctions, then for bollilded 

fw1ctions over a set of finite measure and then for nonnegative fwlctions, a step 

function and then for upper functions. and again a certain amotmt of theory is 

developed in each particular case. The Lebesgue integral as a Riemann integrals is 

defined to allow for complete generality. A theory for functions defines on a set of 

finite measure is makes uses to Riemaim-Stieltjes Integral. To define the theorem of 

the Lebesgue measure and measurable functions, a rectangle in R n "'rith the product 

space n are bounded intervals. open, closed. or neither. The volume of such a

rectangle R, denoted by m(R), is the products of the lengths of its component intervals.

The Lebesgue approach to define the integral of a fwlction f : A c Rn � R is to

partition its range, not its domain as in the Riemann theory. The convergence theorem 

of the Lebesgue Integral used the validity of the limit fJ
N 

� ff when J
N 

� f. In
A .4 

the case of Riemaim integration the uniform convergence of this sequence is a 
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sufficient condition. And this allows used to prove the theorem of the measurable sets 

and functions. 

According to Robert, G (1966), he stated that the characteristic of a given set A 

is a very simple function and contains onl)' two elements, 0 and 1. The Riemann 

integral is undefined for the function. The characteristic function is only one function 

in a class of functions that are not Riemann integrable. In the beginning of the 20111

century, Henri Lebesgue, developed the theory of Lebesgue integration and measure 

to opened up a larger class of functions over which an integral can be defined and 

calculated - including the very basic characteristic function. The definition of the 

Lebesgue integral mirrors that of the Riemrum integral where one takes the infimwn 

and supremwn over all approximating step functions. The fundamental difference 

between the Riemann integral ru1d the Lebesgue integral is that any function that is 

Lebesgue measurable is Lebesgue integrable; whereas measurability is not a sufficient 

condition for Riemann integrability. Lebesgue integrable is Iru·ger than the class of 

functions which are Riemann integrable. In the theory of Lebesgue integral, 

measurability replaces the need for complete continuity because many sets and 

functions are measurable. Lebesgue is able to build a theory of integration and its 

properties over a very large class of functions with the notion of almost everywhere. 

Lebesgue Dominated Convergence Theorem states that if a sequence of integrable 

functions f,, converge almost everywhere to a real-valued measurable function .f

where J/(x)l:S g(x), another real-valued integrable function, then/is integrable ru1d 

ff dµ = lim f fn dµ

where µ denotes the Lebesgue measure function. Convergence of measurable /,, to 

measurable fin the Dominated Convergence Theorem can be shown that if a sequence 

of measurable J,, in L
P 

converges almost everywhere to a measurable f and 

1 fn (x) l:s:; g(x), a measurable function, for all N and x, then f belongs to L
P 

ru1d 

fn converges to .f in L
P

. A sequence of measurable real-valued fn is said to converge 

in measme to a measurable real-valued/ if 

limn�oo µ( {xt:X :I J,, (x) - f(x) I� a})= 0. 

9 
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A sequence can be defined to be Cauchy in measure m a similar way. Also 

J,, unifonnly converges to f if the set 

{xcl' :I/;, (x)- .f(X) I� a} 

is the empty set. If j� converges unifonnly, then J,, converges in measure. Another 

theorem stemming from the notion of convergence in measure is the convergence of 

subsequences of f
n

. The theorem states thaf if there is sequence of measurable real-

valued J,, which is Cauchy in measure, then there is a subsequence of measurable 

real-valued functions that converge almost everywhere and in measure to a 

measurable real-valued f Another corollary states that if a sequence of measurable 

real-valued J,, is Cauchy in measure, then f
n 

converges in measure to a measurable 

real-valued function f for which its limit function is uniquely determined almost 

everywhere. Finally the Lebesgue Dominated Theorem shows that if J,, is a 

sequences of measurable functions in I
,, 

which converge in measure to a measurable/ 

and if! J;, ( x) I� g( x) ( a measurable function in L
,,
) almost everywhere, then f is in L

,, 

and /,, converges in L
,, 

tof An imp01tant aspect of the Lebesgue theory is the goal of 

defining a more universal notion of length, (measure) which is to increase the class of 

Riemann integrable functions to what has been defined as the class of Lebesgue 

integrable functions. For more abstract domains, definition of the outer measure µ*is 

define as µ * (B) = inf I J=lp(E1 J. 
With the notion of outer measure, on any subset of 

R
n 

, one can restrict the Lebesgue measure p, to µ *, the outer measure. Hence 

µ(E)= µ*(E). As a conclusion. there are sets and functions that are not Lebesgue 

measurable or integrable. Nevertheless, the study of the Lebesgue theory is very 

useful. The number of functions which one is able to integrate with Lebesgue is quite 

large and contains a great deal of functions which the Riemann integral has no way of 

exploring. Hence the Lebesgue theory of integration and measurability 1s a very 

powerful result in analysis upon which mathematicians can built upon. 

There are the relations between The Fundamental Theorem of Calculus for 

Lebesgue Integral. There are following theorem are stated about the topic. 
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Theorem 2.5: A function /: [ a. b] � R is absolutelt continuous if and only if it is 

differentiable almost everywhere, its dirivatives /' E L1 [a, b] and, for each t E [ a, b], 

f(t) = f(a)+ ff'(s)ds. 

Theorem 2.6 (Lebesgue Differentiation Theorem): Every bow1ded variation function 

/: [a,b] � R is differentiable almost everywhere with derivatives belonging to 

L1 [a,b]. If the function/ is non-decreasing. Then 

f f'(s)cl� s f(b)- f(a) 

Theorem 2.7: If /: [a,b] � R 1s absolutely continuous with /'= 0 almost 

everywhere then/ is constant. 

Theorem 2.8: Every bounded variation function f: [a,b] � R detennines a unique 

Lebesgue-Stieltjes measure 7J. The :function/ is absolutely continuous if and only if 

its con-esponding Lebesgue-Stieltjes measure 7J is absolutely continuous with respect 

to Lebesgue measure. 

Theorem 2.9: If / : [ a, b] � R is a bounded variation function with associated 

Lebesgue-Stieltjes measure 7J, then the following statements are equivalent: 

a) f is differentiable at x and /'(x) = A.

b) For each s > 0 there is 8 > 0 such that ry(/) - A < s . wherever I is an open 
m(I) 

interval with Lebesgue measure m( I) < 5 and x E I 

11 



CHAPTER3 

THE RIEMANN INTEGRAL 

In this chapter, we will define the Riemrum integral and give a detailed and rigorous 

accow1t of Riemann integration, proving the basic prope1ty of integration as ru1ti­

derivative which comes out as the fundrunental theorem of calculus. 

3.1 The Riemann Integral 

The "inverse" operation of differentiation is integration. We use the integral of 

a function to get the area under the curve: 

y 

0 a 

fr (x)dx

b X 

Figmel: The definite integral off(x) between "a" and "b" 

The function of ff(x)dx is being integrated. The number of "a" and "b" are the 

lower and upper limits of the integral to define the ru·ea under the curve starts and ends. 

The '·dx" was the integrating with respect to x. Figure 1 is a curve and so changes as x 



changes. Up to this point, the only methods for calculating area are we know are for 

simple geometric shapes, pruticularly rectru1gles: 

h 

A=hw 

w 

Figure 2: Area of a rectangle= heights x width 

We will use rectru1gles to figure our area, ru1d we also add more rectru1gles to make the 

ru·ea more accurate. The approximation is very important because it can be refined. 

We will make better refinements to the area by adding more rectangles until we have 

something we can use as a limit. We have two choices for the height of the rectangle, 

the minimum value and the maximum value off(x) for x in [a, b]: 

a) If the minimum value forf(x) was choose, that isj(a):

y 

ArJinf(x) 

Area = min f(x)} (b-a) 

0 a 

y=f(x) 

b X 

Figure 3: First approximation of integral using minimum value of fix) 

The width of the rectangle is the difference between the endpoints, w = b - a, and the 

ru·ea approximation is 

L(f, P) = min f(x)(b - a)= f(a)(b - a). 
xe[a,h] 

L was represents the ru·ea approximation which are approximate from below and its 

depends on the function f(-'-r) and the pru1:ition P. The approximation is less than the 
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real area. This is the first approximation and so P is just the interval and the value of

this approximation,f(a)(b-a) are well-defined. 

b) If instead the maximum value of f(x) over the interval as the height of the rectangle,

that is f (b),

y 

maxj(x) 

area = {maxf(x)}(b-a) 

0 a 

y=f(x) 

b X 

Figure 4: First approximation of integral using maximum value off(x) 

the approximation will becomes: 

U(f, P) = max f(x)(b-a) = f(b)(b -a).
xe[a,b) 

U was represents the area approximation and the maximwn of!(-'() and the width of

the interval was over lined to emphasize that this estimate overshoots the real area. It 

is obvious that 

L(f,P) � f f(x)dx � U(f,P). 

Definition 3.1.1: Suppose/is a bounded real-valued function, given Ris a closed 

and bounded interval, [a, b ], a < b. a finite set of points P = {x
0
,x1

, ... ,x,J such that 

a = x0 < x 1 
< ... < x,, =bis the pa1tition P of [ a, b]. To improve the estimate, we cut

this interval into two equal pieces: 

P={P,,P,) ={[a,a+ b;
a 

]{a+ b;
a ,b]}={[x0 ,x,],[x,,x2 ]}

14 



The basic idea of a partition is to divide the interval [ a , b] into a finite collection of

subintervals. Specifically, we have n+ 1 points of division, with the first point being

x
0 

= a and the last point beingx
11 

= b. There is �x, = x, - x,_1 • i =1,2 .... ,n which is 

equal to the length of the interval [ x,_1, X;] , this call i-th subintervals and clearly non­

overlapping. 

y 

minf(x) 
xeP2 \ 

0 a 

le> . I 

min /'(x) 
x1:i-'2 , 

y= f(r) 

b X 

Figure 5: Second approximation using minimum value offi.x) 

y maxf(x) 
.re/

)

2 

maxf(x) 
xel� 

� y= f(x) 

P� 

0 a b X

Figure 6: Second approximation using maximum value of./{x) 

Now, we have 

and 

The real areas are still between in these two estimates. We will refined our estimates 

by chopping up the interval [ a, b] into ever-smaller pieces and calculate the upper and

15 



lower estimated each time. Suppose that we done in n times, each piece of the interval 

has the same width. 

b-a
t,..,"\: = x,+1 -x; = -­

n 
k=O, 1, ... , n. 

The functions f(x) we have shown in the graph is increasing, so the minimum for each 

piece is at the far left end of the piece while the maximum is at the far right end. Let/ 

be a real-valued function defined on [ a, b] and bounded. We will let 

m = inf{f(x): x E [x,_i,x;]}, 

M = sup{f(x): x E [x;_i,x,]}. 

Sum of the integral is defining using supremum principle which is realized as the limit 

of a set of suitable sums. And the ;n_f is defined as the infimum. 

Definition 3.1.2: 

defined by 

The upper sum U(P. j) for the partition P and function/ is 

" 
U(P,.f) = IM;6.X; 

i=I 

and the lower sum 
" 

L(P,f)= Im,�x;, 
1=1 

since m, � M;, for all i = 1, ... , n, then L(P, f) � U(P. j) for any partition P of [a. b]. 

y 

y=f(x) 

M6 

M:2 M M7 

.tv 1 M4 

M3 

x0
=a X1 X2 X3 X4 X5 x

6 
X7 = b 

Figure 7: U(P,f) 
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y 

y=f(,-.:) 

M7 

M4 

M3 

Figure 8: L(P,f)

If f 2 0, Figure 7 showed that the upper sum for a nonnegative continuous function/ 

U(P, f) represents the circumscribed rectangular approximation to the area under the 

graph off The lower sums were representing by the figure 8 where the inscribed 

rectangular approximation to the area under the graph off We will add up the area 

from each rectangle created from each piece. For each piece, we have the upper and 

lower estimated of the area under j(.-.:), that is, 

Mi (f) = sup{/(x): x E [x,_ 1 ,x,] 

and 

mi (l) = inf{f(x): x E [x,_i,x,]. 

Also defined 
II 

U(P,f) = LM,(f(x))(x; -x;_1)
i=I 

II 

and L(P,f) = Im;(/(x))(x, -x,_1).
/:] 

Then we have our Riemann swn integral. Now assumed the function/ bounded on the 

arbitrary partition P [a, b ], so there is a real number M such that m � f (x) � M for all 

xE[a,b].For 

and 

,, ll 

U(P,f)= LM;.6.x, �LM(x, -x,_1 )=M(b-a) 
1=1 1=1 
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Then, 

J1 II 

L(P,f) = Im;�x, s Im(x, -x,_i) = m(b-a). 
i=I i=I 

U(P, _/) = M(b- a) and L(P, f) = m(b- a), 

for the similar condition as above, w is the width of the rectangle, smce 

ms m; s .A{ s M, for i=l, .... , n. It follows that, 

for each i. If we sum the n inequalities for i=l. .... , n, we obtain 

m(b-a) s L(P,f) s U(P,f) s A1(b-a). 

Above inequality was showed established that for a fixes bounded function, f, the 

collection of all upper sums as well as the collection of all lower sums over f is 

bounded below by m(b-a) and bounded above by 1.\1(b-a). 

Definition 3.1.3: Let f be a bow1ded real-valued function on the closed and 

bounded interval [a, b]. The upper and lower integrals off, is denoted by 

f f(x)dx = inf U (P, /) and f f(x)d-...: = supl(P,/) respectively, where P is a 
a a 

partition of [a, b]. Since the set of lower sums L(P, j) for all possible partitions is 

bounded above by m(b-a) s L(P,f) s U(P,f) s .A1(b-a), the lower integral exists. 

Similarly, the set of all upper swns U(P. f) is bounded below for every pai1ition , the 

upper integral exists. Then from the inequality L(P,f) s U(P,f), we have 

Definition 3.1.4: 

h b 

f.r<ff.
J n 

If .f is a bounded real value-function on a closed and bow1ded 
b b 

interval [ a, b ], then f is said to be Riemann integrable on [ a, b] provided J f = f f. 
a a 

The common value is denoted by ff and is called the set of Riemann integrable off 
(/ 

over [a, b]. We denoted by R[a ,b] the set of Riemann integrable functions on [a, b]. If 
n h 

f E R[a,b], then defined that J.r = - ff. If f: [a.b] � R satisfies ms f(t) s M for 
b (J 
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h -h 

alltE[a,b],then m(b-a)� jf< ff�M(b-a)IfjER[a,b],then 
-a a 

m(b-a)� ff �A1(b-a). 

In particular, if j(.-c) � 0 for all x E [a,b] and f E R[a,q] 1s nonnegative, then the 

quantity fr represents the area of the region bounded above by the graph y = f(x),

below by the x-axis, and by the lines x=a, and x= b. 

Definition 3.1.5: A partition P* of [a, b] is a refinement of P if Pc P * .  A 

refinement of a given partition P is obtained by adding additional points to P. If 

Pi and P
2 

are two paiiitions of [ a, b ], then Pi u P
2 

is a refinement of both Pi and P
2

• 

Remark: By the words, any refinement of the given paiiition increases the lower 

sums and but reduces the upper sums. 

1. Since P* is a finite set which contain P, then P* can be obtained from P by

adding in a finite number of points, one at a time. With showing in general,

adding a single point into a pai·tition P causes the lower Riemann sum to

increase, then clearly adding in finitely many points one after the other will also

increase the Riemann sum from its original value. Suppose that P* is obtained

from P by adding in just one more point z. If P = {x0
,,x1 

.. . .  ,x11
} then there has to

be a n between 1 and k such that x
11_ 1 < z < x11 .

x
11 

Figure 9: Refinement of paiiition P

Let 

m;(f) = inf{f(x): x E [x;_ 1 ,x;]} 

and \ 

M, (/) = sup{/(x): x E [xi-I, x;]}. 
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and 

Now, 

Then, 

s
1 
= inf{f(x): x E [x

1
_1 • .:]}.

s
2 

= inf{f(x): x E [z,x;]}, 
r1 = sup{f(x): x E [x1

_ 1
,z]}, 

r2 =sup{f(x):xE[z,x
1
]}. 

and 

L(f, P) = L m; (f)(x, -x,_1) 

and 

i=l 
�I 11 

= Lm,(f)(x; -x,_1 )+m/f)(x, -x1_ 1 )+ Lm,(f)(x; -x,_ 1) 
i=I i=J+I 
J-J II 

� L m,(f)(x; -x,_1) + s;(z -x,_1) + s2 (x1 -z) + L m, (f)(x; -xH)
l=I l=J+I 

= L(f,P*), 

II 

U(f,P) = LM,(f)(x, -x,_,) 

thu s, 

and 

i=I 
J� n 

= LM;(f)(x, -x,_,)+M/f)(x1 -x,_ 1 )+ LA1;(f)(x, -xi_1) 
i=I i=J+I 

z f M;(J)(x, -x;_1)+1'j(.:-x
1

_ 1 )+r2 (x1 -z)+ f M;(f)(x; -xi_1) 
i=I i=J+I 

= U(f,P*), 

L(f,P) � L(f,P*) 

U(f, P*) � U(f, P).

11. For any partition P of [a. b]. m, (f) � lvf;(f); hence L(f,P) � U(f,P). Now, if

PandP* areanypartitionof[a, b], then PUP * isalso apartitionof[a, b],

whi ch is refined both P and P*, then we have

U(f,P);?: U(f,Pu P*) 
L(f.P u P*) z L(f,P) 

and ( i) asserts that 

U(f,P u P');?: L(f,P u P'), 

therefore, we will have 

U(f, P) z U(f, Pu P*) z L(f, Pu P*) z L(f, P) 
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and 

U(f,P) � L(f,P). o 

Theorem 3.1.6: Let/ be bounded function on [a, b]. Then every upper sum for/ 

is greater than or equal to every lower sum for f So, if Fi and P
2 

are any two 

partitions on [a, b], thenU(/,Pi) � L(f. PJ.

Proof Since Pi U P'2 refines both Fi and Pc , we have 

U(f,P) ?-_ U(f,I'i UP2 ) 

L(f,Pi UP2 ) � L(f,P2 ). 

From the Definition 3 .1.2 have asserts that U (f. Pi U P
2

) � L(f, Pi U P
2

) • Therefore 

Theorem 3.1.7: Let .f is a bounded function on the closed and bounded interval 

[a, b]. Then f is Riemann integrable if and only if for every s > 0 there exists a 

subdivision P of [ a, b] such that 

Proof Let 

U(f.P)- L(f.P) < s. 

f f(x)d'\:,s,U(f.P) and f f(x)dx "?_ L(f,P)

Hence, we will get 

Since s > 0 is arbitrary, then 

b h 

a 

f f(x)dx- f f(x)dx < & . 
a a 

b h 

f f(x)dt 'S, f f (x)cfr 
a a 

;, b 

such that U[P,f]-L[P,f] < E-: .  We have J f(x)dx ,s, f f(x)d'(, hence we have 

b b 

a a 

f f(x)dx = f f(x)dY, so that/is Riemann integrable in [a. b]. Then, 
a a 
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b b 

f f=supU(f,P)=infL(f,P)= ff. 
a 

Given £ > 0 from the definition of supremun, we can choose for a partition Pi and P
2

respectively such that 

U(f,Pi) < ff+;, and

Using the fact that/is Riemann integrable, we get 

£ £ L(f.P,) +- > U(f,P.1 )--.·- 2 2 

Now considering the common partition of Pi and P
2

and considering Pi U P
2 

as single partition P. we get

U(f.P)-L(f.P) < £ .o

Discussion: This is the theorem we will often apply to check the integrability of a 

function. The tool for obtaining the desired partition will be the clever manipulation of 

the norm. Specifically, we will make the norm small. In general, if the £ small, the 

norm of P will have to be srnalI as well to guarantee that the difference

U(f,P)-L(f,P) < £ .

Theorem 3.1.8: Let/be a real-valued functions on [a, b]. 

1. If f is monotone on [ a, b], then f is Riemann integrable on [ a, b].

11. If/ is continuous on [a. b]. then/is Riemann integrable on [a. b].

Proof i) If/ is constant on [a. h], then/ is Riemann-integrable on [a. b]. We

assume that f is monotonic increasing on [a. h] and f(a) = f(b). The case for f 

decreasing 1s similar. There exists a partition P on [ a, b] for

which U(f,P)-L(f,P)<t: . Choose a partition P={x0
.x

i ,···,x11 } such that 

II P II=
£ 

, since f is increasing on [a, b], we have
f(b)-f(a) � · 

M;(f) = 
f(x;) and

22 
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Hence, U(f,P)-L(f,P) = ILf(x,)-f(x,_i)][x; -x,_1]
/=l 

E,' 
// 

< 
f(b)-f(a)�)f(x,)-f(x,_1)]\

£ 

= 
f(b)-f(a) [f(x,, )- f(xo)]

=£. 

ii) Suppose f is continuous on [ a, b] and let c > 0 be given. A pai1ition P for

[ a, b] exists, such that

U(f.P)-L(f,P) < t:.

By the m1ifonnly continuity off on [a, b ], there is a o > 0 such that

& I /(x)-f(y) I<-.
b-a 

whenever x,y E [a,b] with Ix- y I< c5. Let P be any pai1ition of [a, b] with II P II< o. 

By the property of continuous function on the closed interval [ X;_1, X;] , there exist 

Now, 

and hence 

Then, we have 

AI; (f) = f(t,) and m, (/) = f(s;), i=l, ... , n. 

IX; - x,_1 \< o. It, -s; I< o,

M, -m, =I f(t, )-- f(s;) I< -
b 
5 

-a

U(f,P)-L(f.P)= L[(/(1;)-.f(s,)](x; -x;_1)
1=1 

// 
E,' 

= I-(-Y;-X,-1)
i=I b-a 

£ 

=-(b-a) 
b-a 

=£. 0 

Discussion: The monotonicity of the function f guarai1tees that the maximum and

the minimwn values occur at the two ends points of its subintervals. So, if we choose 
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a partition with all subintervals having an equal length, d, then since 

2)At!,-m,)=f(b)-f(a), its turn out thatU(f,P)-L(f,P)=dx[f(b)-f(a)].

This justifies the quantity d to be less than 
£ 

. For the Theorem 3. l .8(ii), a 
f(b)-f(a) 

continuous function on a closed interval [a, b], is unifonnly continuous.

I J(t; )- f(s;) I has the extraordinary prope1ty that it can be made as small as we

please provided t, and s, are sufficiently close. The required closeness can be ensured

by the single step of making the nonn of P sufficiently small.

Theorem 3.1.9: Let/ be a bounded Riemann integrable function on [a, b] with

Range/ c [c,d]. If the rp is continuous on [c, d], then the compositionrpo /is

Riemann integrable on [a, b]. 

Proof 

such that, 

Let £ > 0 , then we shall prove the existence of a partition P E P( a, b) 

U(rpo f)-L(rpo f) < &

Since rp is continuous on the compact interval [ c, d], it is bounded and uniformly

continuous. Consequently there is a real constant K such that 

I rp(t) I::; K for all t E [c,d], 

and if we set s' = 
6 

, we know that there is a a > 0 such that 
2K + (b-a) 

s,t E [c,d], It - s I< o �I rp(t)- rp(s) I< e'.

On the other hand, since f E R(a,b), there is a partition P = {x0_ ,x" .... x
n
} such that

Let, 

Then we have 

U(f,P)-L(f,P) < s'o. 

m, = inf{f(x): x E [x;,X;+1]},
m; = inf{rp(/(x)): x E [x;,X;+J},
M, = sup{/(x): x E [x;+i,X;]},
M; = sup{rp(/(x)): x E [x;,x,+1]}.

n-1 

U(rp of)-L(rp of)= 2)M; - m; )(x,+ 1 - X;)
i=O 

24 
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where 

.!1 = {i E {0,1, ... , n -1}: Ai; - m; < 8} 

.!2 = {i E {OJ, ... , n -1}: Af, - m, ;?: 8}, 

therefore, 

lcp(.f(x))-cp(f(y)l<c'· for all x,yE[x;,X;+iL 

which implies that 114;· - m; s r;'. Therefore, 

Then, from equation (3 .1.1 ), 
11-I 

c' o > L (M, - m, )(x,+
1 

- x;)
1=0 

;?: I (Af, - m, )(x;+i - X;)
IE./, 

� JI (x,+1 -x;). 
IE./:: 

Hence, 

Icxi+I -x,) <[/. 
/E.f

;. 

Since M; - m," s 2K, we must have 

I (A( - m; )(x;+i - x,) < 2Kc'.
tE)2 

Then this inequalities yield 

U(cp o f)-L(cpo f) < c'(b-a) + 2Kr:'= c. o

Discussion: For the Theorem 3.1.9, tbe composition of continuous functions is 

continuous and the composition of differentiable functions is defferentiables, one 

might conjecture that. if f: [a,b]->-[c,d] and g: [c.d]-+ R are such that f E R(x)

on [a, b] and g E R(x) on [c, d], then go f E R(x) on [a. b]. 

Example 3.1.10: Consider the functionf(x) = x2 ,x E [OJ]. Forn EN, let P
n 

be 

the partition {o,!. 3-, ... J}. Since/is increasing on [O. 1], its infimum and supremwn
n n 
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on each interval [;: 
1 .; J are attained at the left and right endpoint respectively, with

u -1) 2 ; 2 

m; = 
2 

and li{ =-
2 

• 

n n 

Since !i,-r, = 1 / n for all i, 

and 

Then, 

and 

1 2 2. 2 L(Pn,f)=-dl +2 + ... +(n-1) ],
n 

u (l�,. !) = -;-r1 2 + 2 2 + ... + n 2]. 
n 

Thus supn L(Pn ,f) = ± and U(Pn,f) = ± . Since the collection {Pn : n EN} is a 

subset of the set of all partition of [O, l ]. 

and 

±=sup 11 L( P,,, .f) � sup 
P 

L(P,,. f) = f x2 

dx 
0 

i

__!_=inf,, U(P,,,f) � inf1• U(l�
1
,J) = f x2

dx. 
3 

0 

I 

Therefore f(x) = x2 is integrable on [0,1] with f x 2 dx = __!_. 
l• 

3 

Example 3.1.11: By consider the Theorem 3.1.9, define f: [l, O] � R by 

f (x) = 0 if x is irrational, and /(x) = __!_ if x = JJ with p and q relatively prime 
q q 

nonnegative integers, q -:f:. 0. It has already been shov,:11 that f E R(x) on [O. l]. Define 

g: [0,1] � R by g(x) = 1 if O < x :s; l and g(O) = 0 . Let f =go f . Then if x 1s 

irrational, h( x) = 0 and if x is rational, h( x) = l . Then h is not integrable on [O, 1]. 
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3.2 Properties of the Riemann Inetegral 

The prope1ties express how the integration behaves. Riemann integral keeps all 

of the basic properties of the integral of the continuous functions. We will derive the 

basic prope1ties of the Riemann integral. We consider the closed and bounded interval 

[a, b], a < b in R, and R[a, b] denotes the set of Riemann integrables functions on

[ a, b ]. Our first result proves that the integral is additive.

Theorem 3.2.1: 

and 

Let/, g E R[ a. b] are integrable functions, then / + g E R[ a, b] ,

h I, /, 

f (f 
+ 

g) = ff 
+ f g 

. 

(l (l a 

Proof First, consider any pa1tition P: a= .x0 .x1 , ••• ,xn = b of [a, b] and let

m1 (f) = inf{/ (.x) : x,_1 � x :<;;xi } ,

with corresponding for mi (g ), and mi (f + g). This implies that

L(f + g. P) � L(f. P) + L(g, P), 

U(f + g.P) :<;; U(f.P) + U(g.P), 

(3.2.1) 

(3.2.2) 

for any pa1tition P. Now, we consider any t;' > 0. Since/ and g are integrable, there

exists partition P1 and P
g 

such that 

h b 

ff-1 < L(f, Pr) :<;; U(f, l\) <ff+� 
(l (l 

The partition P obtained by taking all the points of 1� and P
g 

together is a refinement 

of both and therefore both the inequalities displayed above hold if P; and P
g 

are both 

replaces by P. By adding two inequalities obtained by making the replacement, we get
h h b b 

ff+ fg-& < L(f,P)+ L(g,P) :<;; U(f,P)+U(g,P) :<;;+ff+ fg+&. 
a a a a 

By combining the equation (3.2.l) and (3.2.2). since a similar statement is valid for 

lower sums, \Ve have, 
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h b 

ff + f g - & < L(f + g, P) and 
" 

/, b 

U (f + g, P) < ff + f g + s . 
a a 

Since such a partition P has been shown to exist for any positive & , it follows that 
h b h 

ff+ f gs; ff+ g 
a (I 

and 

/, b h 

f (f + g) s; ff + f g . 

a a a 

Since the lower integral never exceeds the upper Riemann integral, then f+g are 

integrable and fmther that 

is also integrable. o 

h b h b 

f (f + g) = f (f + g) = ff+ f g.
a a 

Theorem 3.2.2: If f is integrable on [ a. b] and c is any constant, then cf is 

integrable on [a, b] and 
b h 

fcf = C ff. 
a a 

Proof First consider any pattition P: a= x0
.xi ,···,xn = b of [a, b] and let 

m, (/) = inf{f(x): X;_1 S: x S: x;} , A((/)= sup{/(x): X;_1 S: x S: x;} 

which corresponding meaning for 

m, (cf)= cm,(/) and A1, (c:f) = cM; (f) (3.2.3) 

whenever c > 0. Therefore L(cf: P)=cL(f, P) cmd U(cj,' P)=cU(f, P) for any partition P. 

Hence, whenever/is any bounded function, 

b h 

f cf= cf f and 
(I (I 

I> b 

f cf= Cf f · 
(J a 

(3.2.4) 

This show that, when f is integrable and c >O, the function cf is also integrable and 
b b 

f cf= c ff . When c <O, instead of equation (3.2.3) and (3.2.4), we will then have 
a a 

and 

m, (cf)= d1, (f) and 1'1, (cf)= cm; (f) 

h h 

f cf= cf f and 
a 
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This show that, when/is integrable and c < 0. the function cf also integrable and

b /, 

fc;f =Cf f. D

a J 

Theorem 3.2.3 (Linear property): If/ and g are both integrable on [a. b ], then the

linear combination is also integrable. For, c
1 

and c
2 

any real numbers, 

Proof 

b /, b 

f (cJ + c 2
g)d.x = c 1 f fdx + c2 fgdx). 

.:, a 

Choose 6 > 0 . There is c' > 0 such that 

There are patiitions of P regardless to any refinement P*, S(f;, P/ )- f J,dx � c'. Let
a 

P = Pi u P
2 

, if P* is any refinement of P, then P* is a refinement of Pi and a

refinement of P2 , hence, 

b b 

�I c1 I S(J;,P*)- f.t;dx+ I c
2 I S'(/2 ,P*)- ff2 cfr 

11 

�I C1 I£'+ I C2 I£'� c. 

Hence, c1 / + c
2
g E R(x) on [a, b] and

Theorem 3.2.4: 

b h h 

f(cJ' + C
2
g)cl-r = C

1 
f_ta\'. + c

2 
f gdx). D

" .:, 

Let/ E R[a,b], if f(x) � 0 almost everywhere on [a, b], then

ff (x)dx � 0.

a 

Proof From the Definition 3.1.2, we have the following situation that is 
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m, (f)(b- a)� ff� 1\1, (f)(b- a).

If /(x) > 0 for every x E [a,b], then m,(f) > 0. By using the above inequalities, the 

f J z O is proved. o 

Theorem 3.2.5: If a function /continuous on [a, b], f(x)zO for a�x::;;b, 

and if f f(x)dx = 0, then/ is identically zero on [a, b]. 

Proof If/ is not identically zero on [a. b]. there exists a point c in [a, b] such 

that .f(c) > 0 . Now/is continuous function in the bounded and closed interval [a, b] 

and.f(x) z O. Since/ (c) >O fore E [a,b], ff> 0 are contradicts with the hypothesis. 

Hence/is identically zero on [a. b]. o 

Theorem 3.2.6 (Monotone property): 

/(x)::;; g(x) for a::;; x � b, then 

lf fER[a,b] and gER[a,b] and 

Proof 

f, /, 

ff(x)dx::;; f g(x)dt. 
a a 

Since g(x)-/(x) z O, every lower sum of g-.f over any partition of 

[a, b] is nonnegative. Therefore, 
f, 

Hence, 

J (g(x)- f(x))d, z O . 

b b b 

f g(x)dx- f f(x)d� = J<g(x)- f(x))dx 
a a 

= f (g(x)- f(x))d� z 0

which already prove that 
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I, h 

ff(x)dx s f g(x)cfr. o 
a ., 

Theorem 3.2.7 (Absolute property): 

1/1 and 

If f E R[ a, b] and is integrable, then so is 

b h 

I ffl� fl fl. 
a " 

Proof Since I / I is continuous at every point where f is continuous, 

I/ IE R[a,b]. Since f(x) sl f(x) l=I f I (x) for every x E [a,b], and from the Theorem 

3 .2.4 above, we get the form 
b ;, 

ffs fl/I. 
a a 

(3.2.5) 

Since -f(x) <If I (x) for all x E [a,b], we have again using the theorem 3.2.6 above, 

h h 

fI�-flfl. 
,J ., 

(3.2.6) 

From equation (3.2.5) and (3.2.6). since both of the/and 1/1 is integrable, then will 

prove that 

Theorem 3.2.8: 

;, ;, 

1 f.r I= f1 f 1 . o 
a ,; 

If/ E R[a,b],then If IE R[n,b]. 

Proof Since/is bounded in [a, b], I f(x) Is i for every x E [a,b] so that 1/1 is 

bounded. Let s > 0 be given and let P: a= {x0
,x1

•• • •  ,x,J = b be a partition of [a, b] 

and let x, y E P. Then we have the following 

l[I .f(x)-1 f(y) IJI sl /(x)-.ftv) Is 1\((/)-m, (f).

As x, y vary over [ x,_1, X;], then 

M; Cl f I) - rn, (I I I) s 1W; (f> -m, Cf).

This implies that 

U(I f I, P)-L(I f 1- P) s U(f,P)-L(f, P). (3.2.7) 
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Since f E R[a,b], from 

U(f,P)-L(f,P) < r: for every r: > 0. (3.2.8) 

Using both equation (3.2.7) and (3.2.8), we will get 

U(I f 1,P)-L(I f l,P) < r: 

Hence, 

1/IER[a.h].o 

Discussion: But converse of above theorem are not trne. It can be shO\:vn by 

following example: 

Let f E R[a,b] defined on [a, b] by 

f(x) = {� 1 
when x is rational, 
when x is irrational,

for any partition of [ a. b ]. Then we can check easily that 

b h 

f f = ( b - a) m1d f f = -( b - a) . 
a 

This implies that/is not Riemann integrable in [a, b]. but j/(x)l=l for every x E [a,b].

Hence lfl is Riemann integrable and its value equals to (b - a).

Theorem 3.2.9: Iffis integrable on [a. b] and c E [a,b], then/is integrable on 

[ a, c] and [ c, b] and fmther 

Proof 

b b b 

ff = ff+ ff. 
a C (I 

If f E R[ a, c] and/ E R[ c, h] . if P is any paitition of [ a, c] and Q is 

any partition of [ c, b]. then PUP* is a partition of [a, b] whose component intervals 

are those of P together with those P*. Hence, we have 

L(f, P) + L(f, P*) = L(f, PUP*)� f f

and so, 

L(f,P) + L(f.P*) �f f.

By taking the least upper bound on the left over all P. keeping P* fixed, we obtain 
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C b 

ff +L(f, P*) s ff. 

Now taking least upper bound over all P*. we get 

( h h 

(I 

ffdx+ ff s ff. 
" C (/ 

(3.2.9) 

By usmg similar argument by considering- the upper smns, we get the reverse 

inequality. 

,.: b ii 

ff+ f.r �ff. 
(J C cl 

From equation (3.2.9) and (3.2. l 0). we will obtain 

,, l. ;, 

f.r = f.r + f I. o
a a a 

(3.2.10) 

Discussion: The particular above theorem has an important interpretation for 

nonnegative fimctions. If we split the interval over which we are integrating into two 

parts, the value of the integral over the whole will be the smn of the two integral over 

the subintervals. This amounts to dividing the region whose area must be found into 

two separate parts and observing that the total area is the sum of the areas of the 

separate portions. 

Theorem 3.2.10: If/ E R[a,b], 

1. f E R[c,d] for every subinterval [c.d] c [a,b].

11. /
2 

E R[a,b]. 

111. f·gER[a,b]whenever gER[a.b].

1v. If f,g E R[a,b]. then f I g E R[a.b]. where g is bounded away from zero.

v. If f and g are bounded functions having the same discontinuities on [a, b], then

/ E R[a,b]ifand only if g E R[a,b]

vi. Let gER[a.b] and assume that msg(x)s1\1 for all xE[a,b]. If f is

continuous on [m, M], then the composite function defined by h(x) = f[g(x)] is

Riemann integrable on [a, b].



Proof i) Let £ > 0 be given. Then there exists a partition P of [ a, b] such that

U(f,P)[a.b]-L(f,P)[a.b] < s. 

Let P* =Pu {c.d}. The P* is a refinement of [a, b] then 

U(f,P*)[a.b] � U(f.P)[a,b] 

and 

L(f,P*)[a.b] � L(f,P)[a,b]. 

Now, let Q = P * n[c,d]. Then Q is obtained by restricting P* to [c, cl]. Hence we have 

the inequality, 

U(f,Q)[c, d]-L(f, Q)[c. d] � U(f. P*)[a.b ]-L(f.P*)[a,b] . (3.2.11) 

Because of the left hand side has fewer tem1s which are all non-negative than the right 

hand side. Since f E R[a,b]. we get 

U(f, P*)[a,b]-L(f, P*)[u,b] < &. 

Using equation (3.2.12) ii1 equation (3.2.11), we get that 

U(f,Q)[c,d]-L(f,Q)[c.d] < s. 

Therefore, we get f E R[ c, d] . 

ii) Let & > 0 be given and tlum there exists a partition P of [a, b] such that

U(f.P)[a,b]-L(f.P)[a.b] < e. 

Since, we know that M, (f :. ) = Af, (If 1) 2 m1d m, (/2
) = 1i1, (If I):. . 

U(f
2
, P) - L(/ 2

, P) = L[Af, (.( 2 
)- m, (f

2 )] [x,_i,X;]
:=I 

= I [ 1"1, (I f I)" - m, (I f I/][ xH , X;] 
i=I 

(3.2.12) 

= I {li1,(.f) + m,(/)} {lvl,(I f 1)-m;(I f l)}[x;_1 ,x;] 
i=I 

� 2,,l I {Af, (If 1)- m, (If l)}[x,_1• X; ]. 
1=1 

Where A is an upper botmd off in [a. b]. Therefore, we have. 

U(/ 2
• P)- L(f

2

• P) < 2) .. [U(l f 1-P) - L(I f l,P)] 

by 

U(I f l,P)- L(I f I.P) < {;.,. 
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Hence, 

U(f 2 ,P)- L(f 2
, P) < &

and therefore , f 2 E R[ a, b] . 

iii) Firstly, we shall show that the square of a Riem,mn integrable function is also

Riemann integrable. such that

Thus, 
II 

U(f 2

, P) - l(/2
• P) = L[kl, (/2 

)- m, (f2 )][x;_1, X; J 
1=! 

II 

= L {ll((/) + m, (.f)} {M;(J / 1)- m;(J f l)}[x;_, ,x;]
1=! 

::;; 2J[U(J / J. P) - L(J f I, P)].

We have shown that the square of any Riemann integrable function is Riemann 

integrable, now,/ and g are Riemann inetgarable, 

j(.-'C). g(x) andj(:'C)+g(x) 
are all Riemann integrable, thus, 

(f(x) + g(x)) 2 
- f(x) 2 

- g(x)2 = 2f(x)g(x)

is Riemann integrable, and so f('C)g(x) is integrable. 

iv) Since g(x) :;t: 0 for any x E [ a, b], applying f · _!__ E R[ a, b], provided

_!__ E R[a,b] whenever g E R[a,b] under the given condition. Hence we shall prove
g

that_!_ E R[a,b], whenever g E R[a,b] and g is bounded away from zero. We have,
g 

Jg(x)J>i for every xE[a,b].LetPbe apartitionon[a. b]. a,,BE[x,_i,x,].

Then, 

this implies that 

_l_ - _l_ 
= g(,8)- g(a) 

< _.!_ lg(,8)- g(a)I.g(a) g(,8) ga)g(,B) i 2 

MH)-m,m < };-[M;(g)-m,(g)], 
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Since g E R[a,b]. given & > 0, there exists a partition P such that 

U(g.P)-L(g,P) < i2
t' .

Then we will get 

3.3 The Fundamental Theorem of Integral Calculus 

At this stage in our development, we have proven several theorems for testing 

whether a given function is integrable on an interval [a, b]. But this fact does not give 

us a method for finding the value of the integral. It would be convenient to have a 

procedure to compute easily the actual value of an integral. Thus the fundamental 

Theorem of calculus describes an import::mt connection between integrals and 

derivatives as well as to compute the integrals. The connection between the Riemann 

integral and antiderivative are often called "indefinite" and "definite". 

We have already seen that the definite integral of a positive function can be 

interpreted as the area under the graph of the function. The definite integral is given 

by the a sum which is 
.h n-1 

ff(x)dx =
1

1/�:!Lf(x,)L\x . 
., ,�o 

When the function/was positive, we could interpret each term f(x;)lxx as the area of 

n-1

a very thin rectangle. This means when we perform the sum L f(x; )!xx , we are
,�o 

actually computing the additive inverse of the area of all the rectangles and so the area 

A is given by 

A= - ff(x)dY or ff(x)cfr =-A.

" 

The definite integral measures the additive inverse of the area between the graph and 

the x-axis. Now, when the function /has some regions where it is positive and others 
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where it is negative, we may compute the definite integral by integrating over the 

regions where the function is positive and add that to the integral over the region 

where the function is negative. This leads to the observation that 

f f(x)d"\'. = A1 -A2 • 

a 

Where A 1 is the area bounded by the region where the function is positive and A
2 

is 

the area bounded by the region where the function is negative. So in this most general 

case, the definite integral can still be thought of as measuring area, but it does by 

measuring some area as negative and others as positive. With this interpretation, we 

can convey the following Fundamental Theorem of Calculus. 

Theorem 3.3.1 (The First Fundamental Theorem of Calculus): Suppose that 

/ E R[ a, b] is continuous on the closed bounded interval [a, b] and if 

F(x) = f f(t)dt, 

then, 

F'(i:) = j(r:) 

for all a � x � b . 

Proof If f(x) is continuous function on F(x) = f f(t)dt, then 

F'(x) =f(x). 

For any fixed x E [ a, b] , choose h -:f:. 0 and x + h E [ a, b]. Then, we have the following 
x+i, X 

F(x + h)- F(x) 
= ff(t)dt - f f(t)dt 

a a 

.\" x+h X 

= ff(t)dt + ff (t)dt - f f(t)dt 
.r a 

x+h 

= 
f f(t)dt. 

Notice that ash becomes small, the definite integral can be thought of as the area of a 

very thin strip. In paiticular, the area of this trip may be approximated by the area of a 
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rectangle. This means that 
x+h 

F(x + h)-F(x) = ff(t)dt � f(x)h 

or 

F(.: + h) - F(x)
= t·( ·)I _ "'( 1. . 

h 

Now ash becomes very small. the approximation becomes even better and so we have 

F'(x) = lim F(x + h)-F(x)
= f(x)h. 

h-->0 lz 

Thus verifying the relationship we have been expect. This completes the argument 

which justifies the relationship 

Theorem 3.3.2 (Second Fundamental Theorem of Calculus): Let f E R[a,b] be 

integrable and FE R[a,b] is an any antiderivative off on (a. b) which is continuous 

function such that 

F'(x)=f(x), \ixE[a.b]. 

Then 

ff=F(b)-F(a), \ixE[a.b]. 

Proof Suppose/is integrable on [a, b] and Fis an antiderivative of/on (a, b) 

which is continuous on [ a, b]. In pru1icular, F '(x) = f(i:) for all x in (a. b ). Let 

P = {x0 ,x1 , • • •• x
n

} be a pru1ition of [a. b]. and let 11x, = x, - x,_1• i = 1.2, .... ,n. Now, 

F(b)- F(a) = F(x
11 
)-F(x0 )

= F(x
11) + (F(x

11_ 1 )- F(x
n-i )) + (F(x11_2)- F(x11_2)) + .... + (F(x1 )- F(x1 ))- F(x0 )

= (F(x
n )- (F(xn-l )) - F(x11_ 1 )) + (F(x11_2 )- F(x11_2 )) + .... + (F(x1 ) - F(x0 )) 

= L(F(x;)-F(x,_1)). (3.3.1) 
i=I 

By the Meru1 Value Theorem, for every i = 1,2, .... ll , there exists a point c in the 

interval [ X; - X;_1,] such that 

! ... , ) F(x 1 ) - F(x;_1) , (c =-----
x, -x,_ 1 
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Since F' ( c) = /' ( c) and [x; - x,_1,] = !:..x;, it follows that

F(x,) - F(x
i-1) = f (c)!:l.,'C;.

Hence, putting equation (3.3.3) into equation (3.3.1), 

F(b)-F(a) = Lf(c)t:..x,. 
i=I 

(3.3.3) 

Thus, F(b)-F(a) is equal to the value of a Riemann sum using the pattition P, and so

must lie between the upper and lower sums for P. That is, we have shown that for any 

pati:ition P, 

L(f,P) � F(b)-F(a) � U(f,P). 

But, since f is integrable, there is only one number hat has this property, which is

h 

f f(x)dx. Then we have shown that

ff= F(b)-F(a). o

Example 3.3.3: We shall compute the area under the straight line y= f(,'C) = x

I 

between x = 0 and x= I. That is f xdx .
0 

Solution: An antiderivative of the function f(x) = x is given by the function

x
2 

F(x) = - . (Can check with the F'(x) = f(x).) Now applying the Fundan1ental
2 

Theorem of Calculus, we have 

I 
] f X = F(l)- F(O) = _:_.

0 
2 

This is in fact the saine results as we found those the laborites process of summing. 

Example 3.3.4: 

3 

Since F(t) = 'l:_/i is an ai1tiderivative of f(t) =Ji, we have,
3 

4 3 f r:d 2 ::, 
1
4 16 

0 
16 

-vf, t=-t-
0
=-- =-.

� 3 3 3 
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Example 3.3.5: Find the value of f x 2 
• 0 

Solution: We shall proceed numerically,. First, we partition [O, 2] into n equal 

subdivisions of length � each, to obtain the partition 
n 

For this paitition. 

P,, = {o,I,i,i, .... 21 .. . .  , 211 = 2}. 
n n n n n 

U(PJ = :t(2i)2(�) 
,=, n n 

= 8 n(n + 1)(2n + 1) 
n 3 6 

Where the last inequality is obtained by applying the fomrnla for the sum of squares 

up to n. the sequence {U(P,,)} is monotonically decreasing a:1.1d bow1ded below. By 

taking the limit as n tends to infinity, we get 

. f{U p ) - 1· . [! p - 16 - 8
111 . ( ,, ) f - . nn ( ,,) - - - - .

/1-4.Y) 3 3 

On the other hand. evaluating L(P,,) leads to 

L(P,,) = f(2i) 2 (�) = 83 Ii2 = 83• n(ll-l)(n)(2n-l).
,=1 n n n ,=o n 6 

8 On taking the limits of L(P,,) as n tends to infinity we get quantity - = sup L(P,,), and
3 

now, 
) 8 -

f 

'J - = inf{U(P,,)} � x-
3 0 and 8 2

- = sup c :s; f x 2
• 

3 0 
2 8 2 

2 8 Hence, f x2 = - = f x 2 
, a:1.1d we conclude that f x 2 = � .0 3 0 0 .) 
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Discussion: In the calculation above. we used a rather special collection of 

pai1itions where each subdivision was of equal length. \Ve would have computed the 

supremum of L(J: P) and the infimum of U(f, P) for possible pai1itions, P, of [O, 2], 

and identified both these quantities with the number � Instead, we use the 
3 

subcollection {P,,} consisting of all partition that genefated subintervals of equal 

length, d = 3_. For these pai1itions. we were able to show that 

. f'( '(P )} - . f(L(J) . ) - 8 111 l J n 
- Slip I . ") f - � . 

With the Definition 4.1.5. is sufficient to guarantee that x2 is not only integrable, but 

to establish value of the integral on [0. 2]. 

While it is the case of/is integrable on [a. h], using equally space for calculation will 

yield the value of the integral. They exhibit the two impo11ai1t features: 

a) The partitions used consist of (n + I) equally spaced points.

b) The components of the upper and lower sums associated with suprema ai1d imfima

over subintervals have been replaced by values obtained by evaluating the function

at the endpoints of the subintervals.

In conclusion it is clear that a computation that involves equal length subintervals and 

evaluation of the function only at the end points of these subintervals. 

Discussion: As can be seen from these examples, the Fm1damental Theorem of 

Integral Calculus provides us with powerful tool for evaluating definite integrals 

exactly. However, to utilize the theorem we must first find an ai1tiderivative for the 

function we ai·e integrating. But it docs not tell us which functions have 

antiderivatives. 

3.4 Improper Integral 

All functions that are Riemmm integrable have bow1ded domains and bounded 

ranges. That ftmctions have bounded function arises from the fact that each of the 

integral definitions required the ftmction to be defined on a close interval. That 

41 



function have bounded ranges arose as a prerequisite 111 the case of a Riemann 

integrable due to the fact that we require the supremum and infimum of the function to 

exist as a finite number on each subinterval. In Riemann integration, the integrals are 

defined for bounded functions over bounded closed interval. The object is to extend 

the definitions of the Riemann integral J f ( x)cfr to integrals over w1bounded intervals 

for function which are w1bow1eled at a point in the finite interval of definition. 

In calculus, an improper integral is the limit of a definite integral as an 

endpoints of the interval of integration approaches either a specified real number or 

oo or -oo, or in some cases, as both endpoints approach limits. Specifically, an 

improper integral is a limit of the form 

lim JJ(x)dx 
h--wo 

or of the fonn 

lii� JJ(x)cb: 
1.:-)/i 

}1�, f f(x)cfr, 

lin� JJ(x)di:. 
l'-+(J 

In which one takes a limit in one or the other ( or sometimes both) endpoints. Improper 

integrals may also occur at an interior point of the domain of integration, or at 

multiple such points. It often necessary to use improper integral in order to compute a 

value for integrals which may not exist in the conventional sense because of a 

singularity in the function, or an infinite endpoint of the domain of integration. 

y 

:f 

a C X 

Figure 10: Improper integral 
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Definition 3.4.1: Let f be a real-valued function on [a,oo) that is Riemann 

integrable on [a. c] for every c > a. The improper Riemann integral off on [a, b),

denoted by ff . is defined to be 

h C 

f_r = ��,:;_f I 
a a 

provided the limit exists, then the improper integral 1s said to be convergent. 

Otherwise, the improper integral is said to be divergent. 

Definition 3.4.2: Let/be a real-valued function on (a. b] such that f E R[a,b]for

every c E (a,b). The improper Riemann integral of .f on (a, b], denoted by ff, is 

defined to be 
I> h 

f_r = 
Jin} ff 

�'-h/ 

(] l' 

provided the limit exists, then the improper integral 1s said to be convergent. 

Otherwise, the improper is said to be divergent. 

Definition 3.4.3 (Convergence of the integral): An improper integral converges if 

the limit defining it exists. Tims for example one says that the improper integral 

lim ff(x)dx 
,�:r.i 

exists and is equal to L if the integrals under the limit exist for all sufficiently large t,

and the value of the limit is equal to L. It is also possible for an improper integral to 

diverge to infinity. In that case. one may assign the value of oo or - oo to the integral. 

For instance 

• i> 1 
!rm f-d:x-.
h -w, 

IX 

However. other improper integrals may simply diverge m no particular direction, 

such as 

lim fxsinxdx 
h->O'J 
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which does not exist. even as an extended real number. A limitation of the technique 

of improper integration is that the limit must be taken with respect to one endpoint at a 

time. Thus, for instance, an improper integral of the form 

f f(x)dx

is defined by taking two separate limits. that is 
"' " 

ff(x)dx = }���)�!;, ff(x)dr: 
-0'.J h 

provided the double limit is finite. By the properties of the integral, this can also be 

written as a pair of distinct improper integrals of the first kind, 
C f> 

}I,� f xdx + }],1� fxdx 
a C 

where c 1s any convenient point at which to start the integration. 

It is sometimes possible to define improper integrals where both endpoints are infinite. 

Definition 3.4.4: If a function f is the Riernaim integrable for every s>a, and we 

let F= fl f(x) I dx, and if Fis bounded above on[a,oo), then limF(s) exists ai1d 
S---->OO 

a 

hence f f(x)d.x is said to be converge absolutely. 

Theorem 3.4.5: 
"' 1 The f-dr: for x >a >O converges for p> 1 and diverges for

xr 

p�l. 

Proof 

Hence, 

If p >O and 

The function f (x) = _J_,, is continuous for any x >a and
X 

-1limF(s) = 
S-HJ ({f}-I (1- p) 
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we get 

lim F(s) = oo if p <l. \Vhen p =1, 
X-+-.:.0 

. ' .,f· dt s
F(s) = - = log--

a X a

which tends to oo as s � co . Hence. the given integral converges for p > 1 and 

diverges for p = 1 and for p < 1. o

,:JJ er., 

Theorem 3.4.6: Let F(s)= f f(x)d'\: and G(s)= f g(x)dx are both convergent, 
a 

1.r.. 

and the !�F(s) and !��G(s) exist. Then f[f(x) ± g(x)}ix is convergent and
(/ 

0;J {f.J <'J) 

f[f(x)±g(x)]dr=A±B= ff(x)dx+ fg(x)dY. 
a a a 

Proof Let 

Now, 

limF(s) = A and limG(s) = B.

00 S 

fLf(x) ± g(x)]dx = lim fLf(x) ± g(x)]dx 
.,-,,oo 

a u 

= !�12[f[f(x) ± g(x)]dx] = !�� 'JJ(x)dY ± !�:! 'Jg(x)dx 
a .., a 

=A±B. 

This proved that fLf(x)±g(x)]cfr is convergent and 

Cf) (fJ f'/J 

f [f(x) ± g(x)]dr =A± B = ff(x)dx + f g(x)dY. o 
a ,, 

Theorem 3.4.7 (Comparison Test): If O � f(x) � g(x) for all x E [a,co) and if f(x) 

and g(x) are the Riemrum integrable on [ a, co) • then 



00 C() 

1. If J g(x)cb: converges, then J f (x)dx converges.
a 

00 00 

(I 

11. If J f(x)dx diverges. then f g(x)dx diverges.
a 

Proof 

a 

' ·'
For each s>O, we have O � f f(x) � f gx) which give 

c1 a 

O�F(x)�G(x). 

The function F(s) and G(s) are monotonic increasing function of s. hence, if G(s) 

tends to a limit as s � oo. then F(s) will not tend to a limit. Hence if J g(x)dx 
a 

converges, then ff(x)dx converges. 
a 

ii) Prove, if F(s) is unbounded so that G(s) is also unbounded. Hence if J f(x)d'C 
a 

diverges, then J g(x)dx is divergent. o 
a 

Example 3.4.8: 

derivative of 

on [-"
2 ,0). Hence,

and 

The function .f (x) = 2x sin _!_ _ cos _!_ I is locally integrable and

F(x) = x 2 sin _!_ 
X 

X X 

·'s 1·c ) ix 
2 • 1 i ' 2 • l 4 Xl .=x sm··j" =s sm-+-··-·2-_2 X! -� S 7l' 

:r 

f f(x)cfr = li11!(s:'. sin .!. + 
4

2 ) = 
4

2 -2 .,--.o S 7l' Jr 
-�
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according to Definition 3.4.1. However, this is not an improper integral, even though 

f(O) is not defined and cannot be defined so as to make f continuous at O. If we define

f(O) arbitrarily, then f is bounded on the closed interval [
-

,.
2 ,0) and continuous

except at 0. Therefore J f(x)dY exists and equals � as a proper integral. 
-2 . Tr 

Example 3.4.9: We have some example for the first kind of the first kind of the 

Definition 3.4.1 are 

I. 

11. 

a:, 1 
f-? dx

x-
i 

Solution: 

� 1 ' 1 1 f-
2 

dx is convergent, then F(s) = f-=:;-dx = 1- - so that
I
X 

I
X- S 

"" 1 "" 1Hence, f-
2 

d'C is convergent and f-
2 

dx = 1 
1X 1X 

n J �dx is divergent. Now,
I -V X

aos 
J 

F(s) = f ,-dx = 2(.J-; -1) \ 
I .../X 

So, limF(s) = 1im2( Fs -1) is infinite. Hence. J-�d'C is divergent. 
S-40:, S-40:, 

I .J X 
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I. 

Example 3.4.10: (Theorem 4.4.3) 
ro } 

f� 
a 

Solution: For every x in [0.oo), we have -.1- < _l_
e·' + l e' 

Let f(x) = -1- and g(x) = _J__. While, we obtained that O?Je-, dx is convergent and
e-' + 1 e' 

0 

ro � oo 

fe-xdx = l. Hence, by comparison test, f g(x)dx is convergent, then f f(x)cfr is also
0 a a 

convergent. 

3.5 Riemann-Stieltjes Integral 

The Riemann-Stieltjes integral is a generalization of Riemann integral. It is 

defined that the Riemann-Stiel�jes integral of a real-valued function/ of a real variable 

with respect to a real function g is denoted by 

Jf(x)g(x), 

and defined to be the limit, as the mesh of the paiiition P of the interval [ a, b] 

approaches zero, of the approximating sum 

Lf(c,)(g(x,+ 1 )-g(x/)).

Where c)s in the i-th subinterval [x
i
. X;+i] . The two function f and g are respectively 

called the integra11d and the integrator. Most commonly, g will be non-decreasing, but 

this is not required. In order that is Riemann-Stieltjes integral exists it is necessary that 

f and g do not share any points of discontinuity. An alternative, and slightly more 

general, definition of the Riemann-Stieltjes integral uses the same approximating 

swns. And it takes the limits as more and more division points are inserted into the 

paiiition of [a, b]. With this definition, an integral can exist when/ and g shai·e points 

of discontinuity, as long as they are not discontinuous from the same side at the saine 

point. 
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If g is differentiable to everywhere, then the integral may still be different from 

the Riemann integral. 

f f(x)g'(x)dx.

They will be same if the derivative is unbounded and continuous. However, when the 

functions are continuous and increasing, g. si1ch as Cantor function may have jump 

discontinuity and have derivative zero almost everywhere. For the form of integration 

by parts of the Riemann-Stieltjes integral. the existence of the integral on the left 

implies the existence of the integral on the right. 
b h 

f f(x)dg(x) = f(b)-g(b)-f(a)g(a)- f g(x)df(x).
u 

Definition 3.5.1 (Definition of the Riemann-Stidtjes Integral): Let a be a 

monotone increasing function on (a, b], and kt/ be a bounded real-valued function on 

[a, b]. For each partitionP = {x
0
,x

1 , • • • • •  ,xn } of [a. b]. set 

t:,,.a, = a(x;) -a(x,_1 ). i = 1,2 .... , n.

Since g is monotone increasing, t:,,.a � 0 for all i, let 

m; = inf{/ (t): X;_1 s r::; x,} and 1,,1; = sup {f (t) : x,_1 s t s X;} .

As for the Riemann integral. the upper Riemann-Stieltjes sum off over the partition P 

with respect to a is, denoted U(f, P, a ), is defined by 

U(f. P.a) = IA1, (a(x, )- a(x,_ 1 )) • 
i=I 

Similarly. the lower Riemann-Stieltjes sum off with respect to a and the partition P, 

denoted L(f, P. a ), is defined by 
II 

L(f,P.a) = Im, (a(x,)--a(x;_1 )) 
i=I 

Since m, s M, and t:,,.a, � 0. we have L(f,P.a)::; U(f,P,a) for any bounded 

function/ and any pm1ition P. Frn1hermore, if m s f (x) s lvf for all x E [ a, b] , then 

m[a(b)-a(a)] s L(f.P.a) s U(f.P.a) s Af[a(b)-a(a)] 

for all partition P of [a, b]. Let P be any pm1ition of [a. b ]. Since Ai, s M for all 

i and t:,,.a, � 0, 
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n II !I 

IM/:.a, � IMt::.a, = NII:t::.a, = A1[a(b)-a(a)] .
i=l i=l ,�1 

Thus, U(f, P, a)� M[a(b )-a(a)]. The other inequality follows similarly. In the 

above we have used the fact that 
II 

L !::.a; = (a(x, )-a(x0 )) + (a(x2) -- a(x1 )) + ..... + (a(x11 )- a(x11_ 1 )) 
1=1 

= a(.\,)-a(x
0

) = a(b)-a(ci). 

In analogy with the Riemann integral, the upper and lower Riemann-Stiel\jes integrals 

i> b 

of f with respect to a over [a. b], denoted J fda and f fda respectively, are 
u 

defined by 

f fda = inf{U(f.P,a): Pis a partition[a,b]}, 

f fda =sup{L(f,P,a): Pis a partition[a,b]}. 

The {U(/, P, a): Pis a partition [a,b]} is bounded below, and thus the upper integral 

off with respect to a exists as a real number. Similarly, the lower sums are bounded 

above, and thus the supremum defining the lower integral is also finite. 

Definition 3.5.2: Let f be a bow1ded rea I-valued ftmction on [ a. b], and a a 

monotone increasing function on [a, b ]. If 

b f, 

f jda = f fda 
a ,; 

then f is said to be Riemann-Stieltjes integrable or intrgrable with respect to a on 

[a, b]. The common value is denoted by 
� !• 

f .fda or f f (x)da(x)

and is called as Riemann-Stieltjes integral of/vvith respect to a. 
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Theorem 3.5.3: Let f be a bounded rl?al-valued function on [a, b], and a a

monotone increasing function on [ a, b]. Then

h }; 

f jda s J jda. 
a ,, 

Proof 

P, then 

With the proof of Definition 3 .1.5, if P* is a refinement of the partition

L(f,P,a) s L(f.P*,a) s U(f,P * a) s U(f,P,a). 

Thus if P, L are any two partition of [ a, b ], 

L(f,P,a) s L(f,Pu La) s U(f.Pu L,a) s U(f,P,a). 

Therefore L(f,P.a) s U(f,P.a) for any two partition P, L. Hence,

for any partition L. o

Theorem 3.5.4: 

f jda = supL(f,P,a) s U(f,P,a) 
I' 

{J 

Let a be a monotone increasing on [a, b]. A bounded real-

valued function/ is Riemann-stieltjes integrable with respect to a on [ a, b] if and only

if for every 5 > 0 . there exists a partition P of [ a, b] such that 

U(f, P,a)- L(f, P.a) < c'. 

Furthermore, if P is a partition of [a. b] for which the above holds. then the inequality 

also holds for all refinement of P. 

Proof 

The proven are similarly with the theorem 3 .1 . 7. o 

Theorem 3.5.5: Let/ be a real-valued function on [a, b] and a a monotone

increasing function on [ a, b]. 

i) If/ is continuous on [a, b], then/ is integrable with respect to a on [a, b].

ii) If/ is monotone on [a. b]. and a is continuous on [a, b ], then/ is integrable with

respect to a on [a, b ].
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Proof i) 
5 

Let & > 0 . choose > 0 such that
a(b)-a(a) 

[a(b)- a(a)] 5
< 5. 

· a(b)-a(a)

Sincefis continuous on [a, b], thus exists c'i > 0 such that

E:: I f(x)-f(y) I< 
(I

i 
( a )-aa

(3.5.1) 

for all x,y E [a,b] with (x- y) < o. Choose a partition P of [a, b] such that �a;< o

for all i = 1,2, ... , n. Then by inequality (3.5.1 ).

for all i = 1,2, ... , n. 

Therefore, 

£ 

AI,�a, - m 1'1a, .:::;; ----' a(b)-a(a)

II 

U(f,P,a)-L(f,P,a) = L(M·, - m, )/':-.a,
1=1 

C 
II 

C .:::;; . I �a; = (a(b)-a(a)) < £ .

a(b)-a(a) ,= 1 a(b)-a(a) 

Thus thenf is intgerable with respect to a on [ a, b]. 

for any positive integer n, choose a paiiition P = { x
0

• x
1 , ••••• , x11} of [ a, b] such that

1 
�a; = a(x, )-a(x,_1) = -[a(b)-a(a)].

n 

Since g is continuous, assume/is monotone increasing on [a. b]. Then A1, = f(x;) and

m, = f (x,_1) • Therefore.

U(f,P,a)-L(f.P.a) = L[f(x, )- f(x,_ 1 )]�a, 
i=I 

= 
[a(b)-a(a)] i)f(x, )-f(x;-1 )]

n ,�.1 

= 
[a(b)-a(�1 )][a(b)-a(a)].

Given £ > 0 , choose n E N such that

[a(b) -a(a)] [.f(f>) _/(a)]< 5 .

For this n and corresponding partition P. U(f.P.a)-L(f,P,a)<&, which proves

the results. o 
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Definition 3.5.6: For a given monotone increasing function a on [ a. b ], R( a)

denoted the set of bounded real-valued function/ on [a. b] that are Riemann-Stieltjes 

integrable with respect to a . 

Theorem 3.5. 7 (Mean Value Theorem): Let/be a continuous real-valued function 

on [a, b]. Then there exists c E [a.b] such that 

ftaa = f(c)[a(b)-a(a)]. 

Proof Let m and Af denote the mmurnun and maximum of .f on [ a, b]

respectively. Then by Theorem 3.6.4(d). 

m[a(b)-a(a)] � f fila �Af[a(b)-a(a)]. 

If a(b)-a(a) = 0, then any c E [a,b] will work. If a(b)-a(a)-::/= 0, then by the 

intermediate value theorem there exists c E [a,b] such that 

. l b -

j (c) = ---- f Jda. n 
a(b)-a(a) a 

Theorem 3.5.8 (Integration by Parts): Suppose a and /3 are monotone 

increasing function ob [ a, b] and that each is Stieltjes integrable with respect to the 

other. Then 
h b 

f /Jda = /J(b)a(b)-/J(a)a(a)- f adj]. 
a 

Proof Since a and /J are both increasing, for any partition 

P = {x
0
,x

i
, .... ,x,Jon [a. b]. we have 

II JI 

U(/3,P,a) + L(a,P,/3) = LfJ(x;)(a(x; )-a(x, 1 )) + La(x;)(/J(x; )-/J(x;_i)) 
l=l l=i 

= L (/J(x; )(a(x; )-/J(x; )a(xH ) + a(x;_ 1 )/J(x,) -{X(X;_1 )j3(x;_1)
i=l 

= L(fJ(x,)a(x;)-a(x;_J/J(x,)) = /J(b)a(b) - fl(a)a(a). 
i=l 
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From the integrability of a and /J with respect to each other for every s > 0, there 

exists a pai1ition P such that 

L(a,P,{J)- f ad{J <; and U({J,P,a)- f fJda <;, 

which together with equation (3.5.2) implies that, 
b h 

fad/J + f fJda -/J(b)o:(h) + /f(a)a(a) < s. 
a o 

Since this holds for every s > 0. the left side must be 0. o 

Example 3.5.9: Discuss the Riemann-Stieltjes Integral integrability of the 

function,j(x)=x, x E [0,2]. with respect to the function. a: [0,2] � R defined by 

Solution: 

a(x) = {f' if XE [0,1] . 
ff XE (1,2]. 

Given & > 0, choose a pa11ition. P, of [O. 2] such that II P II< & . Notice 

that if /j,a; =a(x;)-a(x,_1):t:O, then [l,o)c;::;;;[x,,x
i
_1], for some 5>1 . It follows 

that there is exactly one ; such that fj,o:; * 0. For this i . we have 

II IJ 

IU(f,P.a)-L(f,P,a)I = I1\cf;fj,ai -Im,fj,a, 
1=1 1=1 

=(Jf, -m, )(1-0) = X;+i -x;

�II P II< t: .

Since s was arbitrary, the existence of the integrals allows. and its value is easily seen 

to be 1. 

Discussion: This example illustrates one of the useful properties of Stieltjes 

integrals, with their difference ·weights· to different values off In this case, the only 

points off that is important for purposes of computing this integral is the value at 1. 

This is due to the fact that a is constant on any interval which does not include 1, 

while at 1, a undergoes rapid change. 
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Example 3.5.10: Discuss the Riemann-Stieltjes integral integrabiliy of the

function f : [0,2] -+ R defined by

a(x) = {O
i,' if x E [0, 1] ,

if XE (1,2]. 

With respect to the function a(x) = f(x).

Solution: For any partition P* ' there exists a refinement

P = {O = x
0 

s x
1 
s ..... s x

11 
= 2} of [ 0, 2], for which there exists a subinterval [ X;, x,_1]

that contains the point 1 as well as a point greater than 1. As in the example above, we

have 11a, = 1 while 6.a 
1 

= 0 for ; � j, whence

U(f,P,a) = LM;6.a; = M,11a; =J(l-0) = 1.
i=I 

On the other hand,
II 

L(f,P,a) = Im,11a, = m;6.a; = 0(0-1) = 0.
1=1 

I 1 I 

Consequently, f fda = 1 and f fda = 0. Hence , f fda does not exist.
0 0 0 

Discussion: a does not have to be continuous. 6.a; does not have to shrink to Oas

II P II� 0. Now Theorem 4.6.3(a ) uses the fact that I f(x, )-f(x;_1) I must shrink to 0

as the norm of P goes to O to avoid the problems with discontinuities in a . Theorem

4.6.3(b) uses the continuity of a, which forces 6.a; to shrink to O as the norm of P

goes to O to avoid the difficulties with discontinuous and the points of discontinuity

match in such a way that the situation cannot be retrieved.
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CHAPTER4 

THE LEBESGUE INTEGRAL 

4.1 Measure Theory 

Rather than partitioning the domain of the function, as in the Riemann integral, 

Lebesgue choose to partition the range. Thus, for each interval partition, rather than 

asking the value of the function between the end points of the interval in the domain, 

the Lebesgue asked how much of the domain is mapped by the function to some value 

between two end points in the range. 

range 

doma;n domain 

Figure 11: Two ways to cow1ts rectangles- partitioning the range as 

opposed to pa1titioning the domain of a function. 

Measure theory was used to determining how much of the domain is sent to a 

particular po1tion of a partition of the range. The notion of measure is based on 

capturing the essence of a simple intuitive idea and extending it by a mathematical 



procedure to more general setting. The intuitive idea in our case is the length of m,

denoted by m(A), which is the difference between its end-points. 

Definition 4.1.1: If J is an interval, we define the measure of J, denoted m(J), to 

be the length of J. Thus if J is (a, b), (a. b], [a, b), or [a, b]: a,b ER, then 

m(J) = h-a. 

Definition 4.1.2: If A is an open subset of R, then there exists a finite or 

countable collection U
n

} of pairwise disjoint open intervals such that 

A=LJI,,. 
II 

Recall. the family {I
ll
} IS pairwise disjoint if and only if I

n 
n I/11 = 0 whenever 

Definition 4.1.3: If A is an open subset of R with A = LJ I
11 

where {/
11

} is a finite 
II 

or cow1table collection of pairwise disjoint open intervals, we define the measure of A, 

denoted m(A), by 

m(A)= Im(l
11

). 

Remark: 

(a) For the empty set 0, we set m(A)=O.

(b) The stm1 defining m(A) may be either finite of infinite. If any of the intervals are of

infinite length, then m(A) = oo. On the other hand, if 

A= UI
11 , 

n=l 

where the I,, are pairwise disjoint bounded open intervals, we may still have 
•f. 

m(A) = Im(/
11

) = oo, 

due to the divergence of the series to OJ. Since m( I
11

) � 0 for all n, the sequence of 

partial sums is monotone increasing and thus either convergence to a real nwnber or 

divergence to oo. 
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Theorem 4.1.4: If A and B are open subsets of R with A c B, then 

m(A) :S: m(B). 

Proof Suppose A= Uin 
and B = UJ,,, where {JJ,, and {J 111 t, are finite or 

n n 

countable collection of pairwise disjoints open intervals. Since A c B, each interval 

I
n 

c J 
m 

for some m, let 

-,..r - fn 
. 
I ,- J } J\: m - t · n ....__ 111 • 

Since the collection {J
m

}
m 

is pairwise disjoint, so is the collection{N
111

}
111 

and

Therefore, 

m(A) = L ImU 11 ). 

Then, 

L m(I11 ) :S: m(J
111 ). o 

neN
,,, 

Remark: IfA is an open subset of (a. b), a,bER, then .m(A)�b-a. Thus 

every bounded open set has finite measure. 

Theorem 4.1.5: If A is an open subset of R, then 

111(A) = lim m(An
) 

n-·>:r 

where for each n EN, A,, =An (-11.11). 

Proof For each n, A
n 

is open. with 

for all n EN. By Theorem 4.1.4. the sequence {m(A,,)} is monotone increasing with 

m(A
n
) :S: m(A) for all n. Therefore, 

limm(A,,) :S: m(A). (4.1.1) 
n->ro 

If A is bounded. then there exists n
0 
EN such that 
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A n ( -n, n) = A 

for all n � n
0

• Hence m(An ) s; m(A) for all n � n
0 

and thus equality holds in equation 

( 4.1.1 ). Suppose that A is an unbounded open subset of R with 

A= UI,, 
n=I 

where {/
11

} is a finite or countable collection of pairwise disjoint open intervals. If 

m(In ) = oo for some n, either /11 = R or /" is an interval of the form (-oo,a11 ) or 

(an , oo) for some a II E R . Suppose /11 = ( a
11 

• .x,) . Choose n
0 

E N such that n
0 
�I an I,

Then for all n � n
0 

, 

/11 n (-n, n) = (a11 • n), 

and thus, 

co= lim 111(/
11 
n (-n. n )) s Jim m(A

,,
) s; m( A). 

n�oo n�oo 

Therefore holds the equation ( 4.1.1 ). Suppose m(/,,) < oo for all n. Since A is 

unbounded, the collection {/11} must be infinite. If the collection were finite, then 

since each interval has finite length, each intervals is bounded, and as a consequence A 

must also be bounded. Let a E R with a < m(A). Since 

ImUn ) = mv1) >a, 
11=1 

there exists a positive integral N such that 
N 

Im(/11 ) >a.
11=] 

Let B = LJ In . Then Bis a bounded open set, and thus by the above, 
n=I 

m(B) = limm(Bn(-n,11)). 
n-w, 

Since m(B) >a, there exists n 2: n
0 

such thai 

m(Bn(-n,n))>a for all n:::::110 • 

But B n (-n.n) C An for all 11 EN. Hence by Theorem 4.1.4, 

and as a consequence 

m(A11 ) > a for all n � n
0

. 
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If m(A) = oo, then since a< m(A) was arbitrary, we have m(A11 ) 
� oo as n � oo. If 

m(A) < oo, then give & > 0. take a= m(A) ·-- & . By the above. there exists n
0 

EN 

such that 

Therefore, 

Theorem 4.1.6: 

then 

m(A)- f.; < m(A
n
):::; 111( A) for all n :2: n

0
. 

m(A) = lim11i(A,,). o 
/1-J>O'.) 

If { A11 } 11 is a finite or countable collection of open subsets of R,

Proof If {I,,} �=t is a finite collection of bounded open intervals. then 

The collection {I,,} is not assumed to be pairwise disjoint. o 

Definition 4.1.7: If E is a subset of R, the characteristic function of E, denoted x E, 

is the function defined by 

( ·) _ {1, X. E £. 
Xii x - 0. xi E.

Suppose I is a bounded and open interval. Choose a,b ER such that/ c [a,b]. Since 

x, is continuous on [a. b] except at the two endpoints of!, x, E R[a,b] with 

I, 

f x,(x)cfr=m(I). 

If A is an open subset of [a, b] with 

A= LJ.!11 

11�1 

where {.!"} are pairwise disjoint open intervals, then 

1// 

X1/x) = I X1n (x)'
li�I 
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and thus, 

111 m b h 

m(A) = :Z:m(J,,) = L Jx.1. (x)dx = fxu(x)dx. 
11=1 n=I a a 

To defined the measure of a compact of subset of R, let K is a subset compact of R and

A is any bounded and open set containing K. then

A=KU(A\K). 

The fact of A \K is also open and bounded, and thus has finite measme, the measure of 

K will be defined. 

Definition 4.1.8: 

m(K). is defined by

Let K be a compact subset of R. the measure of K, denoted

m(K) = m(A) - m(A \ K), 

where A is any bounded and open subset of R containing K.

Theorem 4.1.9: If K is compact, then m(K) is well defined.

Proof 

have, 

Suppose A and B are any two bounded open sets containing K, then we

m(A) + m(B \ K) = m(A U (H \ K)) + m(A n (B \ K)) 

= m(A U B) + m((A n B) \ K). 

In the above. we have use the fact that 

A LJ ( B \ K) = A LJ B 

and 

Similarly, 

m(A \ K) + m(B) = m(A U B) + m((A n B) \ K). 

Therefore, 

m(A) + m(B \ K) = m( B) + m(A \ K). 

Since all the terms are finite, 

m(A)- m(A \ K) = m(B)- m(B \ K). 

Thus the notation of m(J{) is independent of the choice of A; m(K) is well-defined. o
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Theorem 4.1.10: If A is an open subset of R and a, b E R, then 

m(A n [a,b]) + m(A'n[a,b]) = b-a.

Proof When A'= R \A = {x ER: x (i!: A}. If A is open, the A' is closed and

thus An[ a, b] is a compact subset of [ a, b]. Suppqse B ::::) [ a, b] is open. Let

K= An[a,b]. Then since B::::) K,

m(K) =rn(B)-m(B\K).

But, 

B \ K = sn (An[a,b])'= (B n A) U (B n [a,b]')::::) Bn A.

Therefore, m(B n A) s m(B \ K). Since An [a,b] c An B,

m(B n [a,b]) + m(K) s m(A n B) + m(B)-m(B \ K) s m(B).

Given £ > 0, take B = (a-&,b +&).Then

m(A n [a,b]) + m(A'n[a,b])) s b-a+ 2&.

Since E.: > 0, is arbitrary, this proves that 

m(A n [a.b]) + m(A'n[a,b ])) s b-a.

To prove the reverse inequality, let(. =[a+&,b-&], where O < £ < �(b-a). Then

m(A n [a,b]) + m(A'n[a,b ])) � m(A n (a,b)) + m(Ani
c
).

Since (a, b) is an open set containing Ani
c
,

m(A'nl
6

) = b-a-m((a,b) \ (A'n!
c 
)) . 

But, 

m((a,b) \ (AnI. )) = m(((a,b) n A) U ((a,b) n I'.))

= m(((a,b) n A) LJ (a,a-&) + (b-B,b)) .

By Theorem 4.1.6, 

s m(A n (a,b)) + 2£.

Therefore, 

m(A n [a,b]) + m(A'n[a,b]) � b-a-2&. o

Definition 4.1.11 (I1mer and Outer Measure): Let E be a subset of R. The

Lebesgue outer measure of E, denoted m*(E), is defined by

m * (E) = inf{m(A): A is open with E c A}.
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The Lebesgue inner measme of E, denoted m *(E), is defined by

m. (E) = sup{m(K): K is compact with Kc E}.

m. ( E) = m * ( E) - m * ( E \ K) .

Theorem 4.1.12: The measure m * and m. both exhibit monotonicity. That is,

given Ac B c R, and for any subsets of R, 0 s m. (E) s m * (E) it follows that

Proof If K is compact and A is open with K c E c A, then

0 s m(K) s m(A).

If K is fixed, then m(K) s rn(A) for all open sets A containing E. Taking the infimwn

over all such A gives

0 s m( K) s m * ( E). o

Example 4.1.13 (Definition 4.1.3):

For alln=l,2, .... ,set 1,, =(n--1-,n+-1-). Then
2n 2n 

Since n + rn < (n + 1) - r<n+IJ for all n EN , the collection Un } ;=1 lS pamv1se

disjoint. Let A= LJ In .

Then,

n=l 

'° °' 1 °' 1 1m(A) = ImUn ) = I2-11 
=I-= = 2. 

n=l n=I 2 n=O 2 1- (1 / 2)

The set A is an example of unbounded open set with finite measure.

Example 4.1.14 (Theorem 4.1.12)

a) If Eis any contable subset of R, then m.(E) = m * (E) = 0. Suppose E = {xn };=,.

. 
( [; E: ) 

,,, 
Let E: > 0 be arbitrary. For each n, let 1,, = x,, -y,x

n 
+

Y' 
, and set A =�!11

• 

Then A is open with E c A. by Theorem 4.1.6,
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<.O " f; ·Xl 1 m( A) s '°' m(J ) = '°' --· · = '°' ·-.. --.. ·- =2t: .L.. n L..
1 n L.. 1n-l 

n=I ,,�1 - n=O -

Therefore, m * (E) < 2& . Since t: > 0 was arbitrary, m * (E) = 0 . As a 

consequence, we also have m * (E) = 0. 

b) If I is any bounded interval, then m. (I) :::;:. m *(I)= m(J), suppose !=(a, b) with

a, b E R . Since I is open, m * (I) s m(J) = b - a . On the other hand, if 

[ f; F,J 0 < t: < b - a , then a+ 
2
. b -

2 
is a compact subset of I, and as a consequence,

b - a - t: = m[ a + ; . b - ; J s m. (I).

Therefore, b - a - & s m. (I) s m * (I) s b - a . Since & > 0 was arbitrary. equality 

holds. A similar argument proves that if I is any closed and bounded interval, then 

m. (I) = m * (I) = m(J). As a consequence of Theorem 4.1.12, the result holds for any 

bounded intervals I.

4.2 Measurable Sets and Measurable Functions 

Definition 4.2.1: A set E c R is Lebesgue measurable, if m • (E) = m. (E) , 

measure E is denoted simply by m(E) and is given by 

m(E)= ni' (E) = m. (E) . 

A straight forward extension of this definition was applies to w1bow1ded sets. 

Definition 4.2.2: The measw-e for an unbounded set E is defined as 

m(E) = limm(E n [-n,n]).
Jl-Hn 

Remark: If E is unbounded and En I is measurable for every closed and 

bounded interval 1, then the sequence {m(En[-n.n])};=
1 

is non- decreasing, and as a 

consequence m( E) = lim m( En [-n, n]) exists. 
n->oo 
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Theorem 4.2.3: The outer measure, m · , is countably additive on the set of all 

measurable subset of R. If { A11 
In= 1,2, ... } is a set of measurable subsets of R, then 

Theorem 4.2.4: 

O".) ':I.' 

m • (LJ A
n
) = L m. ( AJ . 

n=I n�I 

Every set E of outer measure zero is measurable with m(E) = 0 

Proof 

interval I, 

Suppose E c R with m*(E) = 0. Then for any closed and bounded 

m *(En I)� I* (E) = 0. 

Thus m. (En I) = m *(En I) = 0 and hence En J is measurable for every closed and 

bounded interval I. Since m(E n [-n, n]) = 0 for every n EN, m(E) = 0. o 

Definition 4.2.5 (Measurable function): Let E be a bounded measurable subset of 

R and f : E � R a. function. Then f is said to be measurable on E if 

{x EE I .f(x) > r} 1s measurable for every real number r. Since 

.r- 1 ((r,oo )) = {x: .
f

(x) > r} ,f is measurable if and only if .r- 1 ((r,co)) is a measurable 

set for every r E R . 

Theorem 4.2.6: If each function in sequence {/11} is measurable on a set A and

iffis the pointwise limit function of {f
n
} , then/ is measurable very well. 

Proof Let x EE and r ER such that j(x)>r. Let p be a natural number such 

that f(x) > r + _!_. Then. by definition of limit .. there exists a natural nwnber N such
p 

that for all n > N, 

Thus, 

This implies that 

J;, (x) > r + l
p 

f(x) = limf,, (x) > r + _!_ > r.
II->?? p 
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{xEEl/(x)>r}=LJLJ LJ {xEElf;,(x)>r+_!_} 
p=l N=ln=N+l p 

Since this set is measurable and r was arbitrary, then/ is measurable. o 

Definition 4.2.7: The simple function is the development of the Lebesgue 

integral and will make use of a pedestrian class of measurable class. A simple function 

f : A � R is a measurable function which takes on finitely many values. 

Theorem 4.2.8: A function f : A � R is measurable if and only if it is the 

pointwise limit of a sequence of a simple function. 

Proof Supposer is a simple function on [a, b] with ranger={a,, ... ,a
n
}, 

where a, :;:. a
1 

wherever i -:;t. j. For each i=l, ... ,n, set 

Since r is measurable, each A i is a measurable set, and 

r(x) = LaixA, (x).
i=I 

Furthem10re, since a, :;:. a
1

, if i:;:. j, the set A,, i=l, ... ,n, are pairwise disjoint with 

U';=, A, = [a.b], r(x) = La,x
A
, (x) is called the canonical representation of r. If all 

i=I 

the set A i are intervals, then r is a step function on [ a. b]. o 

4.3 Integrating Bounded Measurable Function 

To constmct the integrating bounded measurable functions, we will first 

constmcting the Riemann integral except pru1itioning the range rather than the domain 

of the function. 

Let f : E � R be a bow1ded measurable function on measurable subset E of 

R. Let a= inf{f(x) Ix EE} and b > sup{/(x) Ix EE}, u is arbitrary insofar as it is
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greater than the least upper bound off on E. We will define the Lebesgue integral off

over an interval E as the limit of Lebesgue sums. 

Definition 4.3.1: The Lebesgue sum of f : E � R with respect to a partition 

P= {y
0

, • • •  ,y,,} of the interval [l. u] is given as 

L(f,P)= I>:m({xEEIY;-i $f(x)$y;}),
i;J 

where / E [Y;-i, Y;] for all i = I, ... , n and f is a bounded measurable function over a 

bounded measurable set E c R . This is the new ways to count rectangles, the y; is 

the height of the rectangle and the m( {x EE I y
H 

$ f(x) $ y,}) serves as the base of 

the rectangle. The definition of the actual Lebesgue integral is vi1tually identical to 

that of the Riemann integral. 

Definition 4.3.2: A bonded measurable function f : E � R is Lebesgue 

integrable on E if there is a number L E R such that given & > 0 there exists a 5 > 0 

such that I L(P,f)-L I< & whenever II P II< o. where L is known as the Lebesgue 

integral off on E and is denoted by f fdm.

Theorem 4.3.3: A bounded measurable ftmction f is Lebesgue integrable on a 

bounded measurable set E if and only if, given & > 0 , there exists simple functions 

f and f such that 

and 

Proof 

f $.f $f' 

fl- ff<&. 
E E 

If f is a bounded measurable function on a bounded measmable set E,

then /'is a measurable on E. Furthermore, 
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= inf {pdm If is simple and f 2' f). o 

Theorem 4.3.4 (Bounded Convergence Theorem): Suppose {In } is a sequence of 

real-valued measmable functions on [a, b] for which ther� exists a positive constant M 

such that I fn (x) I� M for all n EN, and all x E [a,b]. If 

lim.f,, (x) == f(x), 
tl-4-'.YJ 

then is integrable on [a, b] and 

Proof 

f I dm = ��ll; f .1;, dm . 
[a.b] [J.h] 

Since In � f .f is measurable and thus Lebesgue integrable. Let 

E = { x E [ a. b] : /;, ( x) does not convergence to l(.,'C)}. 

The function g, gn , n EN is defined on [a. h]. 

and 

( )-{ln (x), XE[a, b]\E, 
g/1 x - 0. XE K 

g(x)={l(x), x_E[a, b]\E,
0, .\ E £. 

Since m(E) = 0. g,, = J;, and g =f. Therefore, 

and 

h " 

f g 11
dm = f ln dm 

a " 

b !\ 

f g dm =ff Jm. 
a �J 

Furthennore g
n
(x) � g(x) for all x E [a,b]. Lets> 0 be given. For rn EN, set

£
111 

= {x E [a,b] :I g(x)- g11 
(x) I< s for all n 2 m}.

'" 

Then £1 c £2 c · · · with LJ £111 = [ a. b] . Therefore. 
m=I 

"'' 

n£;11 =0. 
111=1 
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Hence, E'm = [a, b]\ Em . We have lim m(E' 111 ) 
= 0 . Choose m EN such that 

ll]-4/'J' 

m(E\,) <£.Then I g(x)- g
11 
(x) I<£ for all n � m and all x E E

111
• Therefore, 

h h b I• 

f fdm- f J,,dm = f gdm- Jgndm � fl g- gn I dm 
a ,, o " [a,b] 

= fl g - g,, I dm + fl g-g,, I dm

Em E;,, 

< t:m(Em ) + 2lvfm(E;n) < s[b- a+ 2M]. 

Since £ > 0 was arbitrary, we have 

lim f f,,dm = ffdm. on->a:, 
[o,b] [a.b] 

Theorem 4.3.5 (Fatou's lemma): If {/,,} is a sequence of nonnegative measurable 

functions on a measurable set A. and lim /,, (x) = f(x) on A, then 

Proof 

11-HO 

ff dm � liir1 f J
,, 
dm . 

A n->cr:., .4 

Suppose that the set A bounded. For each k EN, let 

h
,,
(x) = min{.(,,(x),k} and h(x) = min{f(x),k}. 

Then for each k E N, the sequence { h" } converges to h on A. since I h,, (x) Is k for all 

x E A, by the bounded conv�rgence theorem. 

fmin{f.k}dm slim fmin:f,.k}dm slim fJ,,dm. 
A n->oo A n->oo A 

Since the above holds for each k EN, 

f fdm = lim f min{/ .k}dm slim f J,,dm. 
A k->oo A 11->a:, A 

If A is unbounded, then by the above for each k E N, 

Remark: 

ff dm Slim ff;,dm � lim ff,dm. D

A()[-k ,k I ,,__.,,, A()[-k ,k I U->.X, A 

Fotou's lemma is often to used to prove that the limit function/ of a 

convergence sequence of nonnegative Lebesgue integrals functions is Lebesgue 
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integrable. For if lim ff.,dm < oo and if f,, -> f on A with f
n 

� 0 for all n, then by the 
A 

Fatou's lemma. f j�dm < oo. Thus/is integrable on A. 

Theorem 4.3.6 (Lebesgue's Dominated Convergence Theorem): Let u;,} be a 

sequence of measurable functions defined on a measurable set A such that 

litn_f,, (x) = f(x) exists for all x EA. Suppose there exists a n01megative integrable 
n-->ro 

functions g on A such that I/� (x) Is g(x) for all x EA. Thenf is integrable on A and 

Proof 

ff dm = !�?.; f j� dm . 
A 1 

Since g is integrable on A. the functions f and _f,, also has finite 

Lebesgue integrals. By redefining all the ./�, . n EN, on a set of measure zero is 

necessary, without loss of generality assume that I f
n 
(x) Is g(x) for all x EA . 

Consider the sequence {g + .t:,} � 0 on the set A. by the F otou' s lemma, 

Therefore, 

f(f + g)dm = lim f (_f,, + K)dm slim f ((,, + g)dm 
A n-><1> A 11--,,x, A 

= f gdm + Jim J.t;,dm. 
A 

11-HF., / 

f jam s liJ_p J.t;, dm . 
A 

n-+j ..; 

Similarly, by applying Fatou · s lenm1a to the sequence {g + f
n
} to obtain 

f (f - g )dm S lim f (g -f
n 
)elm = f gdm + lim f-f

n
dm . 

.4 11
4

.Y.J A A n�a:i A 

But 

Therefore, 
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Remark: The hypothesis that there exists an integrable function g satisfying

lf
n 

l�g for all XE[a.b]is required in the proof in order to subtract fgdm in the

above inequalities. This is not possible if f gdm = oo .

Theorem 4.3.7: Let/ and J;,, n EN, be Riemann iritegrable functions on [a, b] 

with limf,,(x) = f(x) for all x E [a,b]. Suppose there exists a positive constant M 
n -w:, 

such that I f
n
(x) I� Jvf for all x E [a.b] and all n EN. Then

h h 

lim f f
n
(x)cfr == f f(x)dx.

11-4..Y.J 

a a 

Discussion: Recalls that u;,} is w1iformly convergent, if given s > 0, there exists a 

natural number N such that I J;, - f
n 
(x) I< t: whenever n > N, for all x E [a, b] . The

hypotheses placed on u;, } in order for the Lebesgue Dominated Convergence 

Theorem to hold are much less stringent than requiring {J,,} converging uniformly. 

Thus, we can expect that the classes of Lebesgue integrable functions are better limits 

properties than the class of the Riemann integrable functions. 

4.4 Properties of the Lebesgue Integral 

The prope11ies of the Lebesgue integral illustrate some of the techniques of 

Lebesgue integration. 

Theorem 4.4.1: 

measurable set E.

I. Monotonicity:

II. Linearity:

and 

Let f and g be bounded measurable functions on a bounded

If f � g, then J_Jdm � f gdm. 

f<f + g)dm =ff dm + f gdm, 
I: /: £ 
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fcf dm = C fr dm fore ER. 
E i 

III. For any number 1, u E R such that l s f s u

l.m(A) sf f dm s u.m(E).

IV. I ffdml� flfldm.
E Ii 

it follows that 

V. If A and B are disjoint bounded measurable sets and f: Au B-) R is a

bounded measurable function, then

f f dm = ff dm + ff dm. 
AuH " H 

VI. Countable Additivity: if E = E, where the E
11 

are pairwise disjoint bounded 

measurable sets, then

ff dm = L ff dm. 
I:' n=l n, 

4.5 The General Lebesgue Integral 

Suppose A is a bounded measurable subset of R, and that f is a nonnegative 

measurable function defined on A. For each II EN,

J,,(x) = min{f(x),n} = f(x).f(x) s n, n,f(x) > n. 

Then u;,} is a sequence of nonnegative bounded measurable functions defined on A, 

with lim./,,(x) = f(x) for all x EA. Furthermore, if m > n, then
n->OO 

f,, (x) S f
m 

(x) S f(x) 

for all x E A then the sequence 

is monotone increasing, and it converges either to the real number or diverges to oo. 
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Definition 4.5.1: 

i) Let f be a nonnegative function defined on a bounded measmable subset A of

R. The Lebesgue integral of/over A, denoted f fdm, is defined by
A 

f fdm = 1im ffn dn, = sup fmin{/,n}dm. 
11-+oo 

n t! A .4 ' 

ii) If A is an unbow1ded measurable of Rand/ is a nonnegative measmable

fw1ction on A, the Lebesgue integral off over A. denoted f fdm, is defined by 

ff dm = !/:1l f .fdm . 
A An[-n,n] 

A 

The sequence of { f fdm} is also monotone increasing, and thus converges either 
A(l-n,11 ] n,sN 

to a nonnegative real number or diverges to ex,. 

Definition 4.5.2: A nonnegative measurable function/ defined on a measmable-

subset A of R is said to be Lebesgue integrable on A if f fdm < ro. 

Theorem 4.5.3: Let f g be nonnegative measurable functions defined on a 

measurable set A. Then 

i) fct + g)dm = ffdm + f gdm and Ffdm = c ffdm for all c > 0. 
A A .4 

ii) If A,, A
2 

are disjoint measurable subsets of A. then,

f fdm = f fdm+ f fdm. 
A1UA2 ·11 Ai 

iii) If / s; g on A. then ffcin, s; f gdm with equality if/= g on A.

Proof i) 

A A 

Suppose the set A is bounded, let h=f+g. Since 

min{/(x) + g(x),n} s; min{/(x),n} + min{g(x),n} s; min{/(x) + g(x),2n}. 

We have h11 s; J,, + g,, s; h:.n for all n EN. As a consequence, 

f h11 dm s; f J,,dm + f g ,,dm s; f h2,,dm . 

A A A A 

Suppose f,g arc integrable on A. Then, 
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lim( f J,,dm + fg11 dm] = lim f fndm + lim fg11 dm = f fdm + fgdm . 
n-.:,.oo n�tYJ n�rYJ 

.4 A A A A A 

Therefore, since 

lim f hndm = lim f h211dm = fc.1 + g)dm • 
n4oo 11�0'1 

A A A 

If one or the both {J J,,dm }, {J g,,dm} diverges to � , then so theirs swn. We

obtain f (f + g)dm = oo. If A is unbow1ded, then by the above for eachn EN, 
.4 

f (f + g )dm = f fdm + f gdm . o 
Arl{-11,11] A A 

Example 4.5.4: Let the function f(x) = 1/J; defined on (0, l). Then for each 

nEN, 

fn(x) = min{/(x), n } = {Zi fx,
() < X < 1 / n2

,

1/ n2 � X � l. 

Therefore, f fndm = 
1

1fndt + f � dx = _!_ + (2-3-) = 2-_!_. As a consequence,
0 0 11112 \Ix n n n 

f fdm = lim f J,, dm = lim(2 -_!_) = 2 . This answers corresponds t=O improper
(0,1J "-""' (o.1J "-""' n 

Riemann integral of the function f This will always be the case for nonnegative 

functions for which the improper Riemann integral exists. 

Example 4.5.5: Let the function / (x) = 1/ ,J-; defined on (0, 1 ). Then for each n EN, 

fn (x) = min{f(x), n} = 
{ Zi fx,

0 < x < II n 2
• 

1 I n2 
� x � 1. 

I I/ "
l 

I 1 1 
( 

2
) 

1 Therefore, f f
11
dm = f ndt + f I d"=-+ 2-- = 2-- . As a consequence,

0 0 11112 \Ix n n n 

f fdm = lim f J,, dm = lim(2 -_!_) = 2 . This answers corresponds t=O improper 
co.1) "-"oo (o,1J "-""' n 

Riemann integral of the function f This will always be the case for nonnegative 

functions for which the improper Riemann integral exists. 
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CHAPTERS 

DISCUSSIONS, CONCLUSIONS AND SUGGESTIONS 

5.1 Differentiation between the Riemann and Lebesgue Integral 

The Riemann integral are defined as follows: 

• subdivide the domain of the function (usually a closed, bounded interval) into

finitely many subintervals (the pattition)

• construct a simple function that has a constai1t value on each of the

subintervals of the partition (the Upper and Lower sums)

• take the limit of these simple functions as to add more and more points to the

partition

If the limit exists, it is called the Riematm integral and the function is called Riemann 

integrable. Now i will take, in a manner of speaking, the "opposite" approach: 

• subdivide the range of the function into finitely many pieces

• construct a simple function by taking a function whose values are those finitely

many numbers

• take the limit of these simple functions as to add more at1d more points in the

range of the original function



If the limit exists, it is called the Lebesgue integral and the function is called Lebesgue 

integrable. To define this new concept, we use several steps: 

1. Define the Lebesgue Integral for "simple functions".

2. Define the Lebesgue integral for bounded functions over sets of finite measure.

3. Extend the Lebesgue integral to positive functions (that are not necessarily

bounded).

4. Define the general Lebesgue integral.

5.2 Relation between the Riemann Integral and The Lebesgue Integral 

The Riemann integral and the Lebesgue have much more relation with each 

other. We will show that the basic properties of the Riemann integral of a real-value 

function and to relate it to the Lebesgue integral. 

The Riemam1 integral of a bounded real-valued function/: [a,b] � R, andf

can take positive or negative value, but it is essential that/ be a bounded function and 

the domain off be a compact interval. We have the Riemam1 integrable which is 

h -h h 

ff= fr, where rather than f f(x)d"t", so that this integral is not confuse with the
-a {J a 

Lebesgue integral, this notation will reserve for the Lebesgue integral. 

For every continuous function f E R[a,b] is Riemam1 integrable. Lebesgue

integrable is also at the function f E R[ a, b]. Both Riemam1 and Lebesgue integral are

h b -b

agree f f(x)dt = fr= ff 011 every f E R[a,b]. The Riemann integrable makes
<) -a a 

sense only for function/ that is define on a bounded and compact interval. Continuous 

functions are Riemann integrable and their Riemann and Lebesgue integrals coincide. 
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Let f be a nonnegative function in R[ a, oo) . If/ is an improperly Riemann 

integrable then/belongs to the Lebesgue space L[a,oo). then 

f f(x)dx = limr_,00 Ir(f). 

For the this situation, a continuous function/ defined oi;i [a,oo), and /(x) � O,x � a. 

Riemann integral can be form at every T > a , then f is restricts to a nonnegative 

function in C[ a, T]. These integrals are numbers that depends on T and denote them 

by Ir(/) . Ir(!) is an increasing function on T since f is nonnegative. f is said to be

improperly integrable if the partial integral Ir (f) remain bounded. Improper integral 

of /is define by 

J(f) = limr--+oo Ir(!). 

The second type of the improper integral is defined on bounded interval like 

(a,b],[a,b), or (a,b) .but which is unbounded in their domain. Such as

O<x<l. 

Consider a continuous negative function f defined on an interval (a. b] but it 

w1bounded near the left endpoint. That is, for every positive numbers O <E< b- a, the 

function is Riemann integrable where the restriction off to the compact subinterval 

[ a+ & , b]. We denote the Riemann integral by r (!) . When & decrease to a, the 

integrals r (/) increase. f is said to be improperly Riemann integrable if 

r (/) remain bounded and then it belongs to Lebesgue integral space L(a. b] and 

ff(x)cb: = Jim + r (!)E--+u 
(a),] 

Let f be a bounded real-value function defined on a compact interval [a, b]. 

Then/is Riemann integrable if the set D = { x E [a,b] :.fis not continuous at x} of all 

discontinuity points off is a set of Lebesgue measure zero. Every bounded Riemrum 

integrable function defines on [ a, b] is Lebesgue integral. and the two integral are the 

same. 
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5.3 Comparison to The Riemann Integral 

The definition of the Lebesgue integral is very similar to that of the Riemann 

integral, except that in the Lebesgue theory we use measurable partitions rather than 

point partition. If P = {x
0
.x

1
, • • • •  ,x

n
} is a partition on [a, b], then

P* = {[xo, X
1 
]},U{ [xk -1 ·Xk n:=2

is a measurable partition of [a. b]. FurthermL)re. if/is a bounded real-valued function 

on [ a, b ], then. 

L(f,P) s L,(/, P*) and U(f,P) � U/f,P*).

Therefore, the lower Riemann integral off satisfies 

f f = sup{ L(f. P): Pis a partition of [ab]}

s sup { L, (/. L) : L is a measurable partition of [ a, b]}. 

Similarly, for the upper Riemmm integral off we have 

f f= inf{U,(f,L): Lis a measurable of [a, b]}. 

If/ is a Riemann integrable on [a. b]. then the upper mid lower Riemmm integrals off

are equal, and thus 
h b 

ff (x )dx s sup L, (f, L) s i�f U, (f, L) s ff (x )dx
/, 

,. 
n 

· 

a 

where the supremum and infimum are taken over all measmable functions L of [ a. b].

With the Theorem 4.3.6, the Lebesgue's Dominated Convergence Theorem and 

Theorem 4.3.7, the Convergence of the Riemann integrals are stated explicitly related 

the Riemmm mid Lebesgue integrals was : 

If/ is Riemarm integrable on [a, b], then/is Lebesgue integrable on [a, b], and 

f.r ( X )dx = ff dm . 
a laJ,] 

We have seen that the converse theorem is not true. Thus, not only does the class of 

Lebesgue integrable functions have better limits prope11ies, but it is also larger than 

the class Riemann integrable functions. There is an example to re-examine of the 

function below. 
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Example: Consider the sequence of functions {f
n
} over the interval E=[O. 1].

.f 1 1 -< <--1 _ X _ 
I

, 

2" 2n-
Ortherwise. 

The limits function of this sequence is simply f = 0. In this example, each function in

the sequence is Rieamann integrable. as in the limit function. However, the limit of the

sequence of Riemann integral is not equal to the Riemann integral of the limit of the

sequence. That is.
I I 

!�} f fn (x) = 1 =F O = J!i�;fn (x)dx
Q I) 

Then, it is also the case that

!�; f J,,dm = 1 =F O = f,t,�1,;f
n
(x)cfr.

Ill. I ] 10. 1 1 

Thus, we have to show solve the function ./,, by measurable function. There are tlu·ee

cases to consider, co1Tesponcling to three possible choices for the real value number r.

They are

a) r > 2" : The set {x EE I .I;, (x) > r} is a null set and therefore measmable.

b) 0 :s; r < 2n : The set {x E £ I J, 1 x) > r} is tht' closed interval [-1 ,-1-] and 1s
n \ 2" 211-I 

measurable.

c) r > 0: The set {x E £I/Jr)> r} 1s the entire interval E and 1s therefore

measurable.

Thus, each f, is a measurable function. This example could show that although

the Lebesgue integral is superior to the Riemann integral insofar as the size of the

class of integrable functions and the limit properties of these functions. there are still

functions which defy Lebesgue integration.

Discusssion: Definition of the Riemann integration is simple and clearly motivated

as a measure of area. it is \Vell suited to formulating physical laws and performing

computations and it articulates the relationship bdween integration and differentiation
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through the fundamental theorem of calculus. The Riemann integrable functions is not

wide enough, with consider the following observation:

1. In example The function defined on R by

{ I XE Q.
/(x)= o'. XE"cQ\

is not Riemann integrable on any bounded interval, though the function is almost

constant.

2. The set of Riemann integrable functions R[a, b] is not closed wider pointwise

convergence. It is not even closed under monotonic pointwise convergence, let

(fn = n E N) be the sequence of functions defined on [O, 1] by

/' (x) = {1, x = p I <J. E Q n [ 0 ,1 ], q � n,
• 11 0. ortherw1se. 

where p and q have no common factors. u;, E R(O,l) because f,, is continuous except

at a finite number of points. Clearly, J;, (x) increases with n and tends to the functions

f(x) as n � co .

The main difference between the Riemann Integral and the Lebesgue Integral

1s that the Riemann Integral is using over a pa11itioning on an interval and the

Lebesgue Integral is over a partition of a set. If A c R , than the measurable fw1ction

of A is a finite collection {An } of pairwise disjoint measurable subsets of A such that

II 

A=LJA,. 
1=1 

If the partition P= {x0 .x i , ..... x,,}ofthe bounded interval [a, b], then set A.1 =[x
1
,x

2
] 

and An =[x
11
_,,x

11
] for 11=2. then we can easily see that the collection {A,,} is a

measurable functions of [ a, bl and does not need as an intervals.
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Even through both the Riemann Integral and Lebesgue Integrals are :related to 

supremwns and infimums of sums over partitions. In facts if f is bounded real-valued 

function on [a, h] and {A
n

} is a measurable partitions of [a, b] then similar to the 

Riemann upper and lower sums. The Lebesgues sums are defined as 
ll II 

L(f,A) = Im).(A,) and U(f,A) = IM,J(A,)' 
i=I i=I 

where 

m; = inf{f(t): t EA,} and M; = sup{/(t): t EA,}. 

Lebesgue can apply to some more spaces in where the Riemarrn carmot, it is 

because the Lebesgue Integaral uses a more concept of measure to address the length 

of the domain partition. This al lows more flexibility for integration therefore the 

construction of the integral can be done with respects to sets and measure on those sets. 

The Riemarm and Lebesgue can be distinguishing such as foJlowing: 
b 

1. ff (t)dt is use when the Riemann integral of/ does exists.

b 

11. J f(t)dJ(t) is apply for the Lebesgue Integral.

Contrast to the Riemann condition, Lebesgue integrable does not have to bounded 

and continuous anyv,1here while the weakness of the Riemarrn Integral can only be 

applied to bow1ded real-valued functions. Lebesgue Integral also performs better in 

the limits functions while the Riemann Integral is difficult to describe in the limit 

processes. 

5.4 Conclusions 

From the results shO\ving in chapter 4, although the Riemann integration are 

complicated enough since being defined as a limit of upper and lower sums, Riemann 

integrable functions are almost continuous functions, and it can only be taken over or 

unions of intervals so it carmot be used to integrate the abstracts of sets. And thus, 
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Riemann faces difficulties to extend to other abstracts sets, for example. from N to R.

So the most appropriate integral to take place is to solve the weakness of the Riemann. 

Riemann integral and Lebesgue integral are much more similar. But the Lebesgue 

integral is more flexible and useful than the Riemann integral. The fruits of this theory 

are now available in a sequence of powerful results which include the monotone 

convergence theorem. Fatou·s lemma. the dominated convergence theorem and the 

bounded convergence theorem. They all point the superior behavior of the Lebesgue 

Integral compare to the Riemann inkgral insofar as the size of the class of integrable 

functions and the limits properties. 

5.5 Suggestions 

This is a very interesting topic under the real analysis course, it is good idea 

that to teach both the Riemann integral and Lebesgue integral in undergraduate level 

to consider in the syllabus of the mathematics course. It c,m be used as a resource for 

self-study by those students "vho want to deeper understanding of integration. Anyone 

intending to continue in graduate study or further master in pure or applied 

mathematics can consider of these topic. 
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