P pe——

—

———p




oF C Q
D ‘1 S l l 0 O 0 7 8 3 = 2 Perpustakaan Sultanah Nur Zahirah (UMT)

Universiti Malaysia Terengganu

LP 5 FST 3 2009

1100076392

Comparison of riemann and lebesgue integral / Chow Lee Kum.

PERPUSTAKAAN SULTANAH NUR ZAHIRAH
URIVEESE AL SYSTA TERENGGANY @R}
210830 KUALA TERENGGARU

IhQQQ?SBdO' :
. AL S ——

Linatechelsh

PERPUSTAXAAN SCLaiitd wUR ZARIRAH UMT

e e eed




Perpustakaan Sultanah Nur Zahirah (UMT)
Universiti Malaysia Terengganu

COMPARISON OF THE RIEMANN AND LEBESGUE INTEGRAL

by
CHOW LEE KUM

This final year project is submitted in partial fulfillment of the
requirements for the award of the degree of
Bachelor of Science (Computational Mathematics)

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE AND THECHNOLOGY
UNIVERSITY MALAYSIA TERENGGANU
2009

118007632



o JABATAN MATEMATIK
FAKULTI SAINS DAN TEKNOLOGI
UNIVERSITI MALAYSIA TERENGGANU

Unaversitt MALAYSIA TERENGGANUY

PENGAKUAN DAN PENGESAHAN LAPORAN MAT 4499 B

Adalah ini diakui dan disahkan bahawa laporan penyelidikan bertajuk “Comparison of
the Riemann Integral and Lebesgue Integral” by Chow Lee Kum, No. Matriks:
UK 14462 telah diperiksa dan semua pembetulan yang disarankan telah dilakukan.
Laporan ini dikemukakan kepada Jabatan Matematik sebagai memenuhi sebahagian
daripada keperluan memperolehi [jazah Sarjana Muda Sains Matematik Komputasi,
Fakulti Sains dan Teknologi, UMT.

Disahk leh:

Penyelia Utama

Nama: Dr. Zabidin bin Salleh
DR. ZABIDIN BIN SALLENH é /;/2 00 7

Cop Rasmi: Pensyarah b 2711 4o U (s ——————
Jabatan ztematik
Fakuiti Sains ‘an Teknologi
Universiti Malaysia Terengganu
21030 Kuala Terengganu

...........................................

Ketua Jabatan Matematik

Nama: Dr. Haji Mustafa Bin Mmamat

Cop Rasmi: Tarikh: ..... é[) 207 ........

DR. HJ. MUSTAFA BIN MAMAT
= Ketua
Jabatan Matematik
Fakulti Sains dan Tekndlegi
Universiti Malaysia Terengganu
21030 Kuala Terengganu

i



DECLARATION

I hereby declare that this final year project entitled “Comparison of the Riemann
Integral and Lebesgue Integral™ is the result of my own research except as cited in the
references.

Signature . Yr— -

Name : Chow Lee Kum
Matrix No UK 14462
Date - 6" May 2009

i1



ACKNOWLEDGMENTS

I would like to appreciate to all those people who made this final year project possible
and enjoyable experience for me.

First of all I wish to express my sincere gratitude to my supervisor, Dr. Zabidin bin
Salleh for patience. encouragement and tenacity in helping me to learn about this
challenging topic. and for much valuable suggestions and advice. As your future
graduate student, I appreciate that this has been a learning experience for us both.

I would to extend my grateful to Ms. Nor Azlida binti Aleng, who as the PITA
coordinator that gave a lot of contributions to this thesis. | acknowledge the lecturers
from Mathematics Department for their academic support and valuable guidance
during the whole process.

Last, but not least, I thank my family, my parents, for giving me life in the first place,
for educating me with aspects from both arts and sciences. for unconditional support
and encouragement to pursue my interests. Also thanks to my comrade for sharing
their experiences to me. for giving me support and listening to my frustration.

iv



Perpustakaan Sultanah Nur Zahirah (UMT)
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COMPARISON OF THE RIEMANN INTEGRAL AND
LEBESGUE INTEGRAL

ABSTRACT

The development of the integral is most introductory analysis course is centered
almost exclusively on the Riemann integral. In this historical development the
integration is simply introduced as finding the area under a curve. The Riemann
integration is a basic concept in mathematical analysis. since it related to boundedness,
continuity and differentiability. We also consider some integrals of Stieltjes types
which are considered as generalization of the Riemann Integrals which involves two
bounded functions. The Stiltjes integral has very useful applications in probability
theory. mechanics as well as theoretical physics. Another theory of integration more
general than the Riemann theory was called Lebesgue integral, it consider the concept
of measure of a set, starting with simple function and ending with measurable function,
this approach leads to greater generality in the types of function that can integrated.
We will compare both of this integration by using their theorem.



PERBANDINGAN ANTARA PENGAMIRAN RIEMANN
DAN PENGAMIRAN LEBESGUE

ABSTRAK

Dalam bidang analisis, kamiran Riemann adalah pendahuluan yang paling istimewa
dalam perkembangan pengamiran. Dalam perkembangan lepas, pengamiran hanya
semata-matanya untul memperkenalkan mencari luas dibawah satu lengkumg.
Kamiran Riemann adalah konsep asas dalam analisis matematik, ia dikaitkan dengan
keterbatasan, keselanjaran, dan kebolehbezaan. Kita juga menimbangkan sesetengah
kamiran iaitu model Stieltjes di mana mengangap sebagai generalisasi daripada
kamiran Rieamann dimana ia melibatkan dua fungsi batas. Stieltjes sangat berguna
dalam aplikasi dalam teori kebarangkalian, mekanik seperti berdasarkan teori fizik.
Theori pengamiran yang seturusnya adalah lebih umum daripada kamiran Riemann
adalah dinamakan sebagai kamiran Lebesgue, ia dipertimbangkan sebagai konsep
pengukuran suatu set, dimulakan dengan fungsi mudah dan measurable fungsi
sebagai pengakhiran, pencapaian ini memimpin kamiran yang lebih baik untuk
pelbagai fungsi. Kita akan membandingkan kedua-dua pengamiran tersebut dengan
mengguankan prinsip yang telah dibuktikan secara logik.

Vi
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CHAPTER 1

INTRODUCTION

The term of the integration will not meaning finding whose derivatives is
known. This process will be referred to as “antidifferentiation™. Thus a function fis an
antiderivatives of /', and when the domain of fis an interval, any other antiderivatives
of f must be of the form f +C, where C is a constant function. Under certain broad

conditions. the integral of a function can be evaluated via its antiderivatives.

1.1 Introduction of the Riemann Integral

The Riemann integration is a basic concept in mathematical analysis, since it
related to boundedness, continuity and differentiability. The Riemann integral was

started from the tollowing problem.

The problem of finding the area of a plane region bounded by vertical lines
x=a and x=b, the horizontal line y=0, and the graph of the non-negative function
y=f(x), is a very old one. The Greeks has a method which they applied successtully to
simple cases such as y = x*. This “method of exhaustion™ consisted essentially in
approximating the area by figures whose areas were known as rectangles and triangles.

Then an appropriated limit was taken to obtain the result.



In the 17" century. Newton and Leibnitz independently found an easy method
for solving the problem, both consider integration as the inverse operation of

differentiation. For example. in the De analysis, Newton proved that the area under the

nt/n+l

(m/n=#-1) is given by ———— by using his differential calculus
m+n

.min

curve y = @&y

mln

to prove that if 4(x) represents the area from 0 to x then A'(x)=ax""". Even though

Leibniz arrived at the concept of the integral by using sums to compute the area,

integration itself was always the inverse operation of differentiation. The definite

b
integral of a function f{x) on [« b], denoted by Jf(x)dx and the area is given by

(4]

F(h)-F(a), where F is an antiderivative of f. This is the familiar Fundamental Theorem
of Calculas; it reduced the problem of finding areas to that of finding antidrivatives.
Its attention was focused on the inverse character of differentiation and techniques of
evaluating both definite and indefinite integrals. This remained the definition of the

definite integral until the 1820s.

Eventually mathematicians began to worry about the function not having
antiderivatives. When that happened, they were forced to return again to the basic
problem of area. At the same time, it becomes clear that a more precise formulation of

the problem is necessary. Exactly what is area, anyway? Or more generally, how can

h
J f(x)dx be defined rigorously for all continuous functions? This was approach to

integration is due to Cauchy, who was the first mathematicians to construct a theory of
integration based on approximating the area under the curve. By Cauchy’s first
method, and then for functions that may have a finite number of discontinuities at
which the function is unbounded, by Cauchy’s second method. Cauchy’s first method
can be applied to all continuous functions, all bounded functions with finitely many
discontinuities, and it can be applied to some bounded functions with intinitely many

discontinuities.



In the middle of the 19™ century. Cauchy and Riemann put the theory of
integration on a firm footing. They described that at least theoretically on how to carry
out the programs of the Greeks for any function /. The result was the definition of
what is now called the Riemann integral of /. The Riemann integral, proposed by
Georg Bernhard Riemann (1862-1866), is a broadly successful attempt to provide
such as foundation for the integer. Riemann was led to the development of the integral
by trying to characterize which functions were integrable according to Cauchy's
definition. In the process, he modified Cauchy’s definition and developed the theory
of integration that bears his name. One of his achievements was providing necessary
and sufficient conditions for a real-value bounded function to be integrable.
Riemann’s definition starts with the construction of a sequence problem, and gives
useful results for many other problems. The unbounded functions that are extended by
Cauchy, the concept were resulted in a complete and formal expression as a limit of
the certain sum. He concluded that function which is not covered by Dirichlet does not
exist in nature. But there were new applications of trigonometric series to number
theory and other places in pure mathematics. This provided impetus to pursue these

foundational questions. Bernhard Riemann assumed that

lim,, o (D,8, + D8, +...+ D,5,) =0.

n-n

Where P is a partition of [a, b] with o, the length of the subintervals and the D, are

corresponding oscillates of f{x):
Di :| Sup_re.’ f(x) - infve/ f(X) |

For a given P and 6 > 0, define
$'= 5(P,5) =20, .
Dy



The Riemann-Stieltjes integral, proposed were developed by Thomas-Jean
Stieltjes (1856-1894) and arise in many applications in both mathematics and physics.
The general Riemann-Stieltjes integral that will give meaning of the following types

of integrals:
I h L)
f Fx)ax, [Feoydlx) or f F(x)da(x)

where « is a monotone increasing function on [¢, b]. The Riemann-Stieltjes integral

permits the expression of many seemingly diverse results as a single formula.

The beginning of this century saw the development of the notion of the
measure of a set of real numbers that paved the way to the foundations of the modern
theory of the Lebesgue integral. Now was the evitable generalization of the Riemann

integral.
1.2 Introduction of the Lebesgue Integral

The Lebesgue integral using the concept of measure plays an important role in
the branch of mathematics called real analysis and in many other fields in the
mathematical sciences. On the real line, the idea of measure generalizes the length of
an interval, in the plane, the area of a rectangle, and forth, this links us to measure of a
set. It allows us to talk about the measure of a set in the same way that we talk about
the length of an interval. The development of the Riemann integral of a bounded
function on a closed and bounded interval depend on the partitioned |a. b] into interval.
But the time of Riemann there was only an imperfect understanding of sets of real
numbers and so it did not occur to Riemann that the property of Riemann integrability
for a bounded function f depended exclusively on the nature of the set of points of
discontinuity of f. The notion of measure and measurable set play a prominent role in
the development in the Lebesgue integral in that we partitioned [«. b] not into interval,

instead into pairwise disjoint measurable sets.
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The Lebesgue integral is named from Henri Lebesgue (1875-1941), a French
mathematicians, who introduced and complete the theorem by using the notion of a set
of measure zero which is the integral in (L.ebesgue 1904) and defined measure of
subsets of the line and the plane, as well as the I.ebesgue integral of a nonnegative
function. The term “Lebesgue integration” may refer either to the general theory of
integration of a function with respect to a general measure, as introduced by Lebesgue,
or to the specific case of integration of a function defined on a sub-domain of the real
line with respect to Lebesgue measure. Like Riemann, Lebesgue was led to the
development of his theory of integration while searching for sufticient condition on a

function f for which the integrals detining the Fourier coefticients of fexists.

In mathematics, the integral of a non-negative function can be regarded in the
simplest cases as the area between the graph of that function and the x-axis. Lebesgue
integration is a mathematical construction that extends the integral to a larger class of
function. It also extends the domains on which these functions can be defined. It has
long been understood that for non-negative function with continuous functions on
closed bounded interval graph, the area under the curve could be defined as the
integral. However, as the need to consider more irregular functions arose it became
clear that more careful approximation techniques would be needed in order to define a

suitable integral.

Lebesgue was exhibited a trigonometric series that converges everywhere to a
nonnegative function f that was not Riemann integrable. The function f. however, is
integrable according to Lebesgue’s definition and the trigonometric series is the
Fourier series of /. Lebesgue’s theory of integration allows us to prove interchange of
limit and integrations theorems without requiring uniform convergence of the

sequence of functions.



1.3 Problem Declaration

Although the Riemann integral suffices in most daily situation, it fails to meet
our needs in several important ways. First, the class of Riemann integrable functions
is relatively small. Second and related to the first. the Riemann does not have
satisfactory limits properties. That is, given a sequence of Riemann integrable function

1/, with a limit function f = lim 7., it does not necessarily follow that the limit

n—>w .
function f is Riemann integrable. Lastly, partitioning the range of a function and
counting the resultant rectangles becomes tricky since we must employ some way of
determining how much of the domain is sent to a particular portion of a partition of

the range.

1.4 Research Objective

The objective of this final year project is to:
1. Compare the difference between Riemann integral and Lebesgue integral.
ii. A direct theory of the Riemann and Lebesgue integral also need to develope.
1. By compare both of the integral. we must consider the interval and the
convergence of the function.
iv.  Aside from examining the convergence properties of the Lebesgue integral. we

are also interest in how it behaves relative to the Riemann integral.

p—
1]

Scope Research

The Riemann integral simply introduced as finding the area under a curve it
related to boundedness, continuity and differentiability. We also consider the
Riemann-Stieltjes which involves two bounded functions. Rather than partitioning the
domain of the function, as in the Riemann integral, we use the Lebesgue to partition
the range. Thus, for each interval in the partition. rather than asking for the value of
the function between the end points of the interval in the domain, how much of the
domain is map by the function to some value between two ends point in the range is
consider. Aside from examining the convergence properties of the Lebesgue Integral.

we are also interested in how it behaves relative to the Riemann Integral.

6



CHAPTER 2
LITERATURE REVIEW

According to the Cerone, P and Dragomir, S (2008) had already proved that
the approximating of the Riemann-Stieltjes integral via some moments of the

integrand. It started from the simple expression of the Riemann-Stieltjes integral

u(b) zr(a)

b
Jf(t)a’u(t) was that J'f(t) I(ry , when it existed then

| D(f,u;a,b) IS%L(M—m)(b—a) held. L-Lipschitzian of the integrand f of the

Riemann integral was | u(t) —u(s)|< L|r—s|for eacht.s € [a.b]. The expression that

contained the function f, .

b
)I, u(h). j(z a)™ Fio)de —u(A). j(b—z)"—‘ F(t)dt | of

the integral exists where p>o and this general result could be proved by the integration
by part. For the further bounds for monotonic integrand. the integrator f was
monotonic non-decreasing for the error functional F(f u,p;a, b). At last approximating

the finite Fourier transform of f :[a,b] = R on the finite interval [, #] and f{g) was

b
F@) = J f(s)e™™ to provide a composite rule in approximating the Finite Fourier

o

Transform in terms of moments for the function f and the quadrature rule.



Jack. G (2007) had introduced Random Riemann Integral. It could be done by
using Riemann sums which is random variables. However, the idea of the random
Riemann integral came from the first return integral. It was a sequence of real
numbers that dense in the unit interval and belonged to the first return points of the
interval. This integral was further considered as random variables. it followed the

Lebesgue measurable function, f from the unit interval /:=[0.1] into R. For the

Random Riemann sums, it could be defined the Random Riemann sums of fon P if
the integral exists. And it was used that £ | x, |"=>"| 1, |”" _ﬂ rd= ¥l Jl .
le

The Random Riemann sums of a function converged in probability to its Lebesgue
integral would give a sequence of partitions whose size tended to zero. The
convergence of the function depended on the size of the partition in the sequences but
it was used a different construction to choose the random points. This almost proved

the almost sure convergence of random Riemann sums to the Lebedgue integral.

Enrigue, A (1986) developed a very direct theory of the Lebesgue Integral with
the title of The Lebesgue Integral as a Riemann Integral. A general definition of the
Lebesgue Integral is preceded by detinitions for simple functions, then for bounded
functions over a set of finite measure and then for nonnegative functions, a step
function and then for upper functions. and again a certain amount of theory is
developed in each particular case. The Lebesgue integral as a Riemann integrals is
defined to allow for complete generality. A theory for functions defines on a set of
finite measure is makes uses to Riemann-Stieltjes Integral. To detine the theorem of
the Lebesgue measure and measurable functions. a rectangle in R" with the product
space » are bounded intervals. open, closed. or neither. The volume of such a
rectangle R, denoted by #2(R), is the products of the lengths of its component intervals.
The Lebesgue approach to define the integral of a function f:4c R" > R is to

partition its range. not its domain as in the Riemann theory. The convergence theorem

of the Lebesgue Integral used the validity of the limit Jf/v - J fwhen f, > f. In
A 4

the case of Riemann integration the unitorm convergence of this sequence is a



sufficient condition. And this allows used to prove the theorem of the measurable sets

and functions.

According to Robert, G (1966), he stated that the characteristic of a given set 4
is a very simple function and contains only two elements, 0 and 1. The Riemann
integral is undefined for the function. The characteristic function is only one function
in a class of functions that are not Riemann integrable. In the beginning of the 20"
century, Henri Lebesgue, developed the theory of Lebesgue integration and measure
to opened up a larger class of functions over which an integral can be defined and
calculated — including the very basic characteristic function. The definition of the
Lebesgue integral mirrors that of the Riemann integral where one takes the infimum
and supremum over all approximating step functions. The fundamental difference
between the Riemann integral and the Lebesgue integral is that any function that is
Lebesgue measurable is Lebesgue integrable: whereas measurability is not a sufficient
condition for Riemann integrability. Lebesgue integrable is larger than the class of
functions which are Riemann integrable. In the theory of Lebesgue integral,
measurability replaces the need for complete continuity because many sets and
functions are measurable. Lebesgue is able to build a theory of integration and its
properties over a very large class of functions with the notion of almost everywhere.
Lebesgue Dominated Convergence Theorem states that if a sequence of integrable

functions f, converge almost everywhere to a real-valued measurable function f
where |f{x)|< g(x). another real-valued integrable function, then fis integrable and
[ £ du=1im [7, du

where y# denotes the Lebesgue measure function. Convergence of measurable f, to
measurable f'in the Dominated Convergence Theorem can be shown that if a sequence
of measurable f, in L, converges almost everywhere to a measurable / and
| 7,(x)|< g(x) . a measurable function, for all N and x, then f belongs to L, and
f,converges to f in L,. A sequence of measurable real-valued f, is said to converge
in measure to a measurable real-valued f* if

lim,_ u({xe\:

n—o0

LX) = fx)[za)=0.



1100076322

A sequence can be defined to be Cauchy in measure in a similar way. Also

/,,uniformly converges to f'if the set
xeX | f,(x) - f(X) |2 a}
is the empty set. If f, converges uniformly, then f, converges in measure. Another

theorem stemming from the notion of convergence in measure is the convergence of

subsequences of f,. The theorem states that if there is sequence of measurable real-

valued f, which is Cauchy in measure, then there is a subsequence of measurable

1
real-valued functions that converge almost everywhere and in measure to a
measurable real-valued f. Another corollary states that if a sequence of measurable

real-valued f, is Cauchy in measure, then f, converges in measure to a measurable

real-valued function f for which its limit function is uniquely determined almost

everywhere. Finally the Lebesgue Dominated Theorem shows that if f, is a
sequences of measurable functions in L, which converge in measure to a measurable f
and if| 7, (x)|< g(x) (a measurable function in L,) almost everywhere, then fisin L,
and f, converges in L, to f. An important aspect of the Lebesgue theory is the goal of

defining a more universal notion of length, (measure) which is to increase the class of
Riemann integrable functions to what has been defined as the class of Lebesgue

integrable functions. For more abstract domains, definition of the outer measure x *is

define as x *(B) =inf Z With the notion of outer measure, on any subset of

J=Eladyy e
R, , one can restrict the Lebesgue measure p to p*, the outer measure. Hence

WE)= p*(E). As a conclusion. there are sets and tunctions that are not Lebesgue
measurable or integrable. Nevertheless, the study of the Lebesgue theory is very
useful. The number of functions which one is able to integrate with Lebesgue is quite
large and contains a great deal of functions which the Riemann integral has no way of
exploring. Hence the Lebesgue theory of integration and measurability is a very

powerful result in analysis upon which mathematicians can built upon.

There are the relations between The Fundamental Theorem of Calculus for

Lebesgue Integral. There are following theorem are stated about the topic.

10



Theorem 2.5: A function f :[a.b] > Ris absolutelt continuous if and only if it is

differentiable almost everywhere, its dirivatives "€ L'[a.b] and, for eacht € [a.b],

J@ =@+ [f(s)ds.

Theorem 2.6 (Lebesgue Differentiation Theorem): Every bounded variation function

f :[a,b] > R is differentiable almost everywhere with derivatives belonging to

L'[a.b]. If the function / is non-decreasing. Then

i

J-f'(s)(;/s < f(b)- fla)

a

Theorem 2.7: If f:[a,b] > R is absolutely continuous with f'=0 almost

everywhere then f is constant.

Theorem 2.8: Every bounded variation function f :[u,b] —> R determines a unique
Lebesgue-Stieltjes measure 7. The function f is absolutely continuous if and only if
its corresponding Lebesgue-Stieltjes measure 7 is absolutely continuous with respect

to Lebesgue measure.

Theorem 2.9: If f :[a.b] > R is a bounded variation function with associated
Lebesgue-Stieltjes measure 77, then the following statements are equivalent:
a) f is differentiable at x and f"'(x) = A.

nd)

b) For each &£ > 0there is & > 0 such that y
m([l)

< &. wherever [ is an open

interval with Lebesgue measure m(/) <o and x € /

11



CHAPTER 3

THE RIEMANN INTEGRAL

In this chapter, we will define the Riemann integral and give a detailed and rigorous
account of Riemann integration. proving the basic property of integration as anti-

derivative which comes out as the fundamental theorem of calculus.
3.1 The Riemann Integral

The “inverse” operation of ditferentiation is integration. We use the integral of

a function to get the area under the curve:

A ,,sz_(X)

r

[
>

() a b X
Figurel: The definite integral of f{x) between “a” and “*b"

Irl
The function of J‘f(x)(br is being integrated. The number of “¢” and *“b™ are the

lower and upper limits of the integral to define the area under the curve starts and ends.

The “dx” was the integrating with respect to x. Figure 1 is a curve and so changes as x



changes. Up to this point, the only methods for calculating area are we know are for

simple geometric shapes, particularly rectangles:

h

A=hw

w

Figure 2: Area of a rectangle= heights x width

We will use rectangles to figure our area, and we also add more rectangles to make the

area more accurate. The approximation is very important because it can be refined.

We will make better refinements to the area by adding more rectangles until we have

something we can use as a limit. We have two choices for the height of the rectangle,

the minimum value and the maximum value of f(x) for x in [a, b]:

a) If the minimum value for f(x) was choose, that is f(a).

Ay y=f(x)
A
Min f(x)
Area = min f(x)}(b-a)
0 a b

-
-

X

Figure 3: First approximation of integral using minimum value of f{x)

The width of the rectangle is the difference between the endpoints, w = b — @, and the

area approximation is

L(f.P)= 2?313] Sx)b-a)= f(a)Nb-a).

L was represents the area approximation which are approximate from below and its

depends on the function f{x) and the partition P. The approximation is less than the

13



real area. This is the first approximation and so P is just the interval and the value of

this approximation, f{a)(b-a) are well-defined.

b) If instead the maximum value of f(x) over the interval as the height of the rectangle,

that is f(h),

h) ,,sz (x)

max f(x)

area = {max f(x)}(b-a)

A 4

0 a b X

Figure 4: First approximation of integral using maximum value of f{x)

the approximation will becomes:

Uulf.p)= max S)b—a)=f(b)b-a).

U was represents the area approximation and the maximum of f{x) and the width of
the interval was over lined to emphasize that this estimate overshoots the real area. It

1s obvious that

L(f,P)< j F(x)dx <U(f,P).

Definition 3.1.1: Suppose fis a bounded real-valued function, given R is a closed

and bounded interval, [a, b], @ < b. a finite set of points P = {x; X,....,x, } such that

a=x, <x <..<Xx, =his the partition P of [a, b]. To improve the estimate, we cut

this interval into two equal pieces:

_ b—
P= {PI,PZ} = {[U,‘1+951:|a|: +_;£’b:|} = {[xo’xl]ﬂ[xl’XQ]}-

14



The basic idea of a partition is to divide the interval [« ,)] into a finite collection of
subintervals. Specifically, we have #+/ points of division, with the first point being

x, = a and the last point beingx, =b. Thereis Av, =x, —x,_, ;=) 2 5 whichis

equal to the length of the interval [x_,,x,], this call i-h subintervals and clearly non-

overlapping.

)1

' min f (x) v=f(x)

A
min f(x
xebly <( ) \
£ Py
0 a b' 5

Figure 5: Second approximation using minimum value of £{x)

¥ max f(x)
A xely \
s f (G e y=Jtx)
=t
P‘a
P 2
0 a b x

Figure 6: Second approximation using maximum value of f{x)

Now, we have

L(f.P)= xg}h}]f(x)(xl —Xp)+ Yf}}_il} ]f(x)(xz —x) = (X)X —xp) + f(x)(x; —x;)

and

U/, P)y= max f(x)(x—%,)+ max f(x)(x;—x)=f(x)0n—%)+FxXx—x).

The real areas are still between in these two estimates. We will refined our estimates

by chopping up the interval [a. b] into ever-smaller pieces and calculate the upper and



lower estimated each time. Suppose that we done in n times, each piece of the interval
has the same width.

b-a
A% =%, —2, =——3 k=0, 1,..., n.

The functions ffx) we have shown in the graph is increasing. so the minimum for each
piece is at the far left end of the piece while the maximum is at the far right end. Let /'
be a real-valued function defined on [a, 5] and bounded. We will let
m=inf{f(x):xe[x_.x 1}
M =sup{f(x):xe[x_,x]}.
Sum of the integral is defining using supremum principle which is realized as the limit

of a set of suitable sums. And the inf is defined as the infimum.

Definition 3.1.2: The upper sum U(P. f) for the partition P and function f is
defined by

U, H=D MAx,
=1
and the lower sum

L(P, )= im,A’c, ,

=1

since m, <M, foralli=1,.., n.then L(P, f) < U(P. ) for any partition P of [a. b].

K
t y=tx)

N

M2 M3 M7
M4

M1
M3

X,Fa X, P K, & X, x,=b

4 bl

Figure 7: U(P, 1)

16



P y=ftx)
9
: \ M6
M2 M5 M7
Ml M4 |
L | M3
X0 X X X Xy X X %, =0

Figure 8: L(P, 1)

If /' >0.Figure 7 showed that the upper sum for a nonnegative continuous function f.

U(P, f) represents the circumscribed rectangular approximation to the area under the
graph of f. The lower sums were representing by the figure 8 where the inscribed
rectangular approximation to the area under the graph of /. We will add up the area
from each rectangle created from each piece. For each piece, we have the upper and

lower estimated of the area under f(x), that is,

A[,(f) . Sup{f(x):xe [x,_,,.\‘,]

and
m,(f)=inf{f(x):xe[x_,x]
Also defined
UP, f) =D M, (f(X))(x, =)
and LP, 1= 3 m (N —x,.).
1=

Then we have our Riemann sum integral. Now assumed the function /" bounded on the

arbitrary partition P [¢, b], so there is a real number M such that m< f(x) <M for all

x€[a,b]. For
UP.f)=) MAx, <D M(x, -x,_)=Mb-a)
i=| =1

and

17



Lp,f)= Zm,A‘r, <D m(x, —x_ ) =mb-a).
i=1 i=l

Then,
U(P, /) = M(b- a) and L(P, f) = m(b- a).
for the similar condition as above, w is the width of the rectangle, since
m<m, <M, <M, fori=1, ..., n It follows that.
mw, Smw, < M,w, < Mw,

for each i. If we sum the n inequalities for i=1....., »n, we obtain

mb-a)< L(P.f)<U(P.f)<M(Ob-a).
Above inequality was showed established that for a fixes bounded function, f, the

collection of all upper sums as well as the collection of all lower sums over f is

bounded below by m(b-a) and bounded above by M(b-a).

Definition 3.1.3: Let f be a bounded real-valued function on the closed and

bounded interval [a, b]. The upper and lower integrals of f. is denoted by

h b
Jf(x)dx=infU(P,f) and Jf(x)dx=supL(P,f) respectively, where P is a

partition of [a, b]. Since the set of lower sums L(P, f) for all possible partitions is
bounded above by m(b—a) < L(P, /) <U(P, f)< M(b-a). the lower integral exists.
Similarly, the set of all upper sums {/(P. /') is bounded below for every partition , the

upper integral exists. Then from the inequality L(P, /) < U(P, f). we have

b b
'[f< J *e

Definition 3.1.4: If fis a bounded real value-function on a closed and bounded

a

b b
interval [a, b], then f'is said to be Riemann integrable on [a, b] provided J = j '

b
The common value is denoted by I / and is called the set of Riemann integrable of /

«

over [a. b]. We denoted by R[a ,b] the set of Riemann integrable functions on [a, b]. If

/€ R[a,b], then defined that J‘f =— J‘f At fila.b) — R satisfies m < f(t) < M for
h «



b -b
all re[a,b], then m(h—a) < If < Jf <M(b-a)lff € R[a,b]. then

-a

m(b—a) < J.fSJ\fI(b—a).

a

In particular, if f(x) 20 for all x €[a.h] and f € R[a,b] is nonnegative. then the

j)
quantity J f represents the area of the region bounded above by the graph y = fix),

o

below by the x-axis, and by the lines x=a, and x=b.

Definition 3.1.5: A partition P* of [a, b] 1s a refinement of P if PcP*. A
refinement of a given partition P is obtained by adding additional points to P. If

P, and P, are two partitions of [a, b], then P, U P, is a refinement of both P, and P,.

Remark: By the words, any refinement of the given partition increases the lower

sums and but reduces the upper sums.

i.  Since P* is a finite set which contain P, then P* can be obtained from P by
adding in a finite number of points, one at a time. With showing in general,
adding a single point into a partition P causes the lower Riemann sum to
increase, then clearly adding in finitely many points one after the other will also
increase the Riemann sum from its original value. Suppose that P* is obtained

trom /> by adding in just one more point z. If P = {x,,x,....,x,} then there has to

be a nn between 1 and £ such thatx, | <z<x,.
| l I R f
X5 i X Xy Z % X,
Figure 9: Retinement of partition P
Let,
’nl (f) = lnf{f(X) ‘X E [xx—l ’xl]}
and \

M, (1) =sup{f(x):xex_,x]}.
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ii.

—mif‘f(Y) xe[x, ;2
=inf{f(x):x e[z,x, ]'
—suplf(r) yelx ,,,Z]n

n =supif(x):xelz,x,]}.

and
Now,
m,(f)<min{s,.s,; and M, (f)zmax{n.n}.
Then,
L(f,P)= Zm,-(f)(x, ~%.4)
j—l n
zzrnl(f)(\’ \1 1)+I” (f)(\ j—])+ z”1l(f)(xl_xl—|)
i=] i=J+1
=1 "
Z m ()X, =% )+ 5(Z=x, )+ 85:(x, —2)+ D2 m (X —x,,)
_ i:(lf’ P*) 1=+l
and

UUJU=§MLUXn—aQ
= i M, ()x, —x_)+M ()X, —-x )+ Z M () =x)

i=J+}
J-1 n
Zz}MAfX&—xH)+nC~xH)+QUﬁ—z}ﬁZ}Mﬂan—xH)
—U(f, P, o

thus,
L(f,P)<L(f,P¥)

and
U f.Py<U(f,P).

For any partition P of [a. b). m, (/) < M, (f):hence L(f,.P)<U(f.P). Now, if
P and P* are any partition of [«, ], then P P * is also a partition of [a, b],

which is refined both P and P*, then we have
U(Cr,P)zU(f,PuP*)
L(f.PUP¥*)>2 L(f.P)

and ( 1) asserts that
Ur,PuP)yzL(f,PUP),

therefore, we will have
O f B 2 U f P P*)= L{F PO Py = BCL P



and

U(f.P)2L(f.P). O

Theorem 3.1.6: Let / be bounded function on [, b]. Then every upper sum for f

is greater than or equal to every lower sum for f. So, if A and P, are any two

partitions on [a, b], thenU(f,P) = L(f.P).

Proof: Since A, U P, refines both P, and P, . we have
U(f.P)2U(f,PLUP)
Lif R U R) = BB .
From the Definition 3.1.2 have asserts that U(f. P, UP,)= L(f,P, UP,). Therefore
U(f,P)zL(f,P).O

Theorem 3.1.7: Let f is a bounded function on the closed and bounded interval
[a, b]. Then f is Riemann integrable if and only if for every £ > 0 there exists a
subdivision P of [a, b] such that

U(f.P)—-L(f.P)<e¢.

Proof: Let

b &
[ fax<ur.py  and [ fax=zL(f.P) .
Hence, we will get

/]f(X)dx— li[f(x)dx<£.

a

Since € > 0 is arbitrary, then

b
f(X)dx < J F(xX)dx

h b
such that U[P, f]-L[P.f] <& . We have _[f(x)dxs J‘ f(x)dx , hence we have

b h
'[ f(x)dx = J f(x)dx, so that fis Riemann integrable in [a. b]. Then,
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_[f=supU(f,P)-—-infL(f,P)=_ff.

Given ¢ > 0 from the definition of supremun. we can choose for a partition P, and P,

respectively such that

Using the fact that f'is Riemann integrable, we get
L(fPY+2>U(f P -
2 2
Now considering the common partition of P, and P,
; £ _ .., £
L(f.BUP)+=>U(f.BUR)-=
and considering P, | P, as single partition P. we get

U(f.P)-L(f.P)<e.O

Discussion:  This is the theorem we will often apply to check the integrability of a
function. The tool for obtaining the desired partition will be the clever manipulation of
the norm. Specifically, we will make the norm small. In general, if the &small, the

norm of P will have to be smal as well to guarantee that the difference

U(f,P)-L(f,P)<e¢.

Theorem 3.1.8: Let fbe a real-valued functions on [a, b].
1.  Iff is monotone on [a. 4], then tis Riemann integrable on [a, b].

. Iff is continuous on [¢. b]. then fis Riemann integrable on [a. b].

Proof: 1) If f is constant on [« b], then f is Riemann-integrable on [a. b]. We
assume that f/ is monotonic increasing on [a. 5] and f(a) = f(b). The case for f
decreasing is similar. There exists a partition P on [a b] for

which U(f,P)-L(f,P)<¢ . Choose a partition P ={x;x,,...x,} such that

II.2 = , since f is increasing on [, b], we have

AR
f(b) - f(a)
M,(f)=f(x,) and m(f)=f(x_). i=12 .., n



Hence, UL, P = LU P) = S5 f G X, =%,

Z[f( x) = fx DN

f (b) J(a) =
£
= [f(x)- flx
) - @ [/ S (x)]
= 5
ii) Suppose fis continuous on [¢, b] and let & > 0 be given. A partition P for

[a. b )exists, such that
UGS PY— L(f.P) 5.

By the uniformly continuity of fon [a, b], there isa & > 0such that

| f(x) - f(v)|<

—(l

whenever x,y €[a,b] with | x— y|<d . Let P be any partition of [a, b] with || P||< .
By the property of continuous function on the closed interval [x,_,.x;], there exist
points 7,5, € [x,_;.x;] such that
M,(f)=f@) and m(f)=f(s), =l,....n
Now,
X —xl<8. |t -5, <6,

and hence

M, —m, = fiu)= fis)l< c

-—da

Then. we have

UCS.P) - LU P = S L) - F(s))(x, —x,0)

1=1

n &
= Z i (.\'/ - X:—l)
1=1 b —d

:b~a

Discussion:  The monotonicity of the function f guarantees that the maximum and

the minimum values occur at the two ends points of its subintervals. So, if we choose



a partition with all subintervals having an equal length, d, then since

d.(M,—m)= f(b)~ f(a). its turn out that U(f,P)~L(f,P)=dx[f(b)- f(a)] .

This justifies the quantity d to be less than . For the Theorem 3.1.8(ii), a

S p—
f(b)-f(a)
continuous function on a closed interval [a, A]. is uniformly continuous.
| f(2,)—f(s,)| has the extraordinary property that it can be made as small as we
please provided r, and s, are sufficiently close. The required closeness can be ensured

by the single step of making the norm of P sufticiently small.

Theorem 3.1.9: Let /" be a bounded Riemann integrable function on [a, b] with
Range /" < [c.d]. If the ¢ is continuous on [¢, d], then the compositiong e fis

Riemann integrable on [a, b).

Proof. Let £ > 0, then we shall prove the existence of a partition P € P(a,b)
such that.

U(po f)—L(po f)<e.
Since ¢ is continuous on the compact interval [¢, d], it is bounded and uniformly

continuous. Consequently there is a real constant K such that

lop(t) < K forall t €[c.d],

and if we set &'= , we know that thereisa & >0 such that

2K +(b—a)
s,tefed],  |t-sl<d =l pM)-p(s)|<e".

On the other hand, since f € R(a,b), there is a partition P = {x, .x,,....x, } such that

U Sf.P)-L(f.P)<&g'D. (3.1.1)
Let,

m, =inf{ f(x):xe[x,,x,,]}.

m, =inflp(f(x):x €[x,, %]}
Ajz = Sup{f‘(x) VY E [xH»l ‘xi]}a

M =sup{p(f(x)):xe[x,x,]}

Then we have

n—|
Ulpo )= L(go f) =) (M —m ), —x,)

i=0



=D (M) =m )X, = x)+ D (M) —m) )(x,,, —%,),
f';:l2

ie./l
where

{ie{0)...n=1}: M, —m, <6}
{ie{0l..,n=1}:M,—m, 26},

J,
J,
therefore,

| p(f(x)-p(f(y)l<e' torall x.ye[x,x,].

which implies that M, —n, <¢&'. Therefore,

(M —m))(x,, —x) <D &' (x,,, —x,) <£'(b-a).

iel, ied,

Then, from equation (3.1.1),
n-l
o> Z(M, —-m, ) (X, —X,)

> Z(,M, —m )X, = X;)
1€
> ()‘Z(XH'I = X; )

=V

Hence,

Z(XM —Y)< &.

12,

. * *
Since M, —m, <2K, we must have

> (M —m))(x,, —x,)<2Ks'.

e,
Then this inequalities yield

U(po f)—L(po f)<s'(b-a)+2Ke'=¢. 0

Discussion:  For the Theorem 3.1.9, the composition of continuous functions is
continuous and the composition of differentiable functions is defferentiables, one
might conjecture that. if f:[a,b]-—>[c,d] and g :[c.d]—> R are such that f € R(x)

on [a, b]and g € R(x) on [c, d], then go f € R(x) on [a. b].

Example 3.1.10: Consider the function f(x) = x*,x €[0.1]. Forne N, let P, be

e 12 . . : o
the partition {O,—.—,....l} . Since f'is increasing on [0. 1], its infimum and supremum
nn

o
N



. i—-1 i . . . ! . .
on each interval [——— . —J are attained at the left and right endpoint respectively, with
n n

9 ) .2
m, = i 21) and M, =I—2.

n 1

Since Ax, =1/n forall i,

LP,f)= —17[13 +2% 4.+ (n=1)?2),
E

/

and
U(/),,,f)=L3[12+22+...+;12].
a
T | 1
Then, LP,f)==(1-=)2--)
6 n n
) o1 1 1
and UP,N=—01+-)2+-).
6 n n

and U(Pn,f)=l. Since the collection {P, :ne N}is a

Thus sup, L(P,, f) = ;

l")l,_..

subset of the set of all partition of [0, 1].

1 o .
3=5up, L(P,, N Ssup, L(P,.f) = [x2ax

0

and

1
=inf, U(P,./)y<inf, U(P,, )= jx%}x.

no
0

L | ==

1
Therefore f(x) = x? is integrable on [0.1] with |x dx = l
¢ 3

Example 3.1.11: By consider the Theorem 3.1.9, define f:[1,0]—> R by

f(x)=0 if x is irrational, and f(x)=—1— if x=2 with p and ¢ relatively prime

q

nonnegative integers, ¢ # 0. It has alrcady been shown that f € R(x)on [0. 1]. Define
g:[00] > R by g(x)=11if O<x<1 and g(0)=0. Let f=go f . Then if x is

irrational, A(x)=0and if x is rational, :(x) =1. Then 4 is not integrable on [0, 1].
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3.2 Properties of the Riemann Inetegral

The properties express how the integration behaves. Riemann integral keeps all
of the basic properties of the integral of the continuous functions. We will derive the
basic properties of the Riemann integral. We consider the closed and bounded interval
[a, b]. @ < b in R, and R[a. b] denotes the set of Riemann integrables functions on

[a, b]. Our first result proves that the integral is additive.

Theorem 3.2.1: Let /, g € R[a.b] are integrable functions, then f + g € R[a.b],

and

fr+o=[r+ e

Proof: First, consider any partition P :a = x,.x,....,x, =b of [a, b] and let
m(f)=mnf{f(x):x,_, Sx<x},
with corresponding for m, (g).and m,(f + g). This implies that
L(f+g.P)=2L(f.P)+L(g.P), 3.2.1)
U(f+g.P)<U(f.PY+U(g.P), (3.2.2)
for any partition P. Now, we consider any ¢ > 0 . Since fand g are integrable, there

exists partition P, and P, such that

h b
Jr-3<urpysvgpy<fr 2

a a

b b
& ;o - iy g
o5 <1rm 500y < fa+ 5

The partition P obtained by taking all the points of P, and P, together is a refinement

of both and therefore both the inequalities displayed above hold it P, and P, are both

replaces by P. By adding two inequalities obtained by making the replacement, we get

h h b b
[7+[g—e<Lf.Py+ L. PYSU(L,P)+U(g.P)<+ [+ [g+e.

a a a a
By combining the equation (3.2.1) and (3.2.2). since a similar statement is valid for

lower sums. we have,



}f+}g—e-<L<.f+g.P) and l/’(.f+g’P)<le+}g+8'

o o

Since such a partition P has been shown to exist for any positive £, it follows that
b P b b b b
J'f+J'gSJ'f+g and J.(f+g)sjf+J‘g.
Since the lower integral never exceeds the upper Riemann integral, then f+g are

integrable and further that
b b b b
[U+er=[(f+a=[r+]e

is also integrable. o

Theorem 3.2.2: If f is integrable on [a. ] and ¢ is any constant, then cf is

integrable on [a, b] and

h

Icf' = chjf :

a

Proof: First consider any partition P’:a = x,.x,,....x, =b of [a, b] and let
m(f)y=mnf{f(x):x_, <x=x,} , M(f)=suptf(x):x_, £x=<x}
which corresponding meaning for
m,(cf)=cm,(f) and A (¢f)=cM,(f) (3.2.3)
whenever ¢ > 0. Therefore L(cf, P)=cL(f, P) and U(cf. P)=cU(t, P) for any partition P.
Hence, whenever f'is any bounded function,
, ~

J. gf = c,] / and J ef = cli[ il (3.2.4)

o

a

This show that, when f'is integrable and ¢ >0. the function ¢f is also integrable and

b b
_[cf =ic Jf . When ¢ <0. instead of equation (3.2.3) and (3.2.4), we will then have

m,(cf)=cM, (f) and M, (c/)=cm, (f)

and

el

} cf =c'/] f and ’] cf =c} f.



This show that, when f'is integrable and ¢ < 0. the function ¢f also integrable and

b

J.cfzclil‘f. i

a

Theorem 3.2.3 (Linear property):  1f fand g are both integrable on [a. b], then the

linear combination is also integrable. For, ¢, and ¢, any real numbers,

¢, f +c,g € Rla,b]. then,

bJ‘(C]f +c,g)dx = ¢, ]fdx +c, []gdx) .

Proof: Choose € > 0. There is &'> 0 such that

(e |+|e, De'SE.

There are partitions of P regardless to any refinement P*, <eg'. Let

S B - [

P=P UP,, if P* is any refinement of P, then P* is a refinement of P, and a

refinement of 7,, hence,

h h
S(e,f, +czf2.P*)—[c, [fidc+e, _[f_,»dr}

o

b b
aS(f,P*)+6,8(f » P¥)—c, [fidx—c, [f,dx

e | +|e, |

U P¥) - [ fiax

h
S(fysP*)= jfzdx-!
e |e+|e, |g'Se.

Hence, ¢, f +¢,g € R(x)on [a, b] and

l:[(c'lj' +c,8)dx =, /]‘jd\' +¢, ’:[gdx) .0

Theorem 3.2.4: Let f € R[a,b], if f(x)=0 almost everywhere on [a, b], then
j F(x)dx 0.
Proof: From the Definition 3.1.2, we have the following situation that is



h
m,(f)b-a)< [f <M (f)b-a).
If f(x)>0 for every x €[a,b], then m,(f) > 0. By using the above inequalities, the

b
If >0 is proved. 0

Theorem 3.2.5: If a function f continuous on [a, b]. f(x)>0 for a<x<bh,

b
and if Jf(x)dx = (. then f is identically zero on [«, b].

a

Proof: If f is not identically zero on |a. b]. there exists a point ¢ in [a, b] such

that f(c) >0 . Now fis continuous function in the bounded and closed interval [a, b]
and f(x) > 0. Since f(¢) >0 forc € [a.b]. '[f > 0 are contradicts with the hypothesis.
Hence fis identically zero on [a. b]. 0

Theorem 3.2.6 (Monotone property): If feR[a,b] and ge R[a,b] and

f(x)< g(x) for a<x<b, then

/:[f('x‘)dx < ,:[g(x)dr.

Proof: Since g(x)— f(x) >0, every lower sum of g-f over any partition of
[a, b] is nonnegative. Therefore,

b
J (g(x)~ f(x)dx>0.

Hence,

bjg(-r)dr - Jf (x)dx = []'(g(x) = f(x)dx

= [ (g0~ f(xNdy 20

which already prove that



[].f'(x)dx < f[g(x)dx‘. 0

Theorem 3.2.7 (Absolute property): It /' e R[a.b] and is integrable, then so is
| f] and

[refin.

Proof: Since | f | is continuous at every point where f is continuous,
| fle R[a,b]. Since f(x)<| f(x)|= f]|(x) for every x € [a,b], and from the Theorem

3.2.4 above, we get the form

b h
[r={ir. (3.2.5)
Since — f(x) < f|(x) forall x €[a.b]. we have again using the theorem 3.2.6 above,
h h
[r=-]ir1 (3.2.6)

From equation (3.2.5) and (3.2.6). since both of the fand | /] is integrable, then will

prove that

A A
Jr=fiflo
Theorem 3.2.8: If f e Rla.b].then| | |e R[a,D].

Proof: Since fis bounded in [a. b], | /(x)|< i for every x €[a,b]so that | f| is
bounded. Let & > O be given and let P:a ={x,.x,...,x,} =bh be a partition of [a, b]
and let x.y € P. Then we have the following
Il FCo=1 OIS F) = FQO) IS M) —m, ().
As x, y vary over|x,_.x,]. then
M A fD=m( f)sM(f)-m(1).
This implies that

U(FLPY=-LA fI.P)SUS, PY-L(f.P). (3.2.7)



Since f € R[a,b]. from
U(f,P)-L(f.P)<e¢ forevery € >0. (3.2.8)
Using both equation (3.2.7) and (3.2.8). we will get
U(fILP)-L(f],P)<¢e
Hence,

| le Rla.b]. O

Discussion: ~ But converse of above theorem are not true. It can be shown by
following example:

Let f € R[a,b] defined on [a, b] by

fx)= 1 when x is rational.
) 1 when x isirrational,

for any partition of [a. b]. Then we can check easily that

}il. f=((b-a) and IJ. f==(b-a).

This implies that fis not Riemann integrable in [¢, /]. but [{{x)|=1 for every x € [a,b].

Hence | /| is Riemann integrable and its value equals to (b - a).

Theorem 3.2.9: If fis integrable on [a. b] and ¢ € [a,b]. then fis integrable on
[a, ¢] and [c, b] and further

Jr=Jr+]r

Proof: It /e Rla,c] and f € R[c.b]. if P is any partition of [a, c] and Q is
any partition of [¢,b]. then P P* is a partition of [¢, b] whose component intervals

are those of P together with those P*. Hence, we have
h
L(f.P)+ L(f.P*)=L(f.PUP* < j 14
and so.

LU/ P)+ LU RS | .

By taking the least upper bound on the left over all P. keeping P* fixed, we obtain



7195 Ji.

Now taking least upper bound over all P*. we get

[fax+ [r<[r. (3.2.9)
By using similar argument by considering the upper sums, we get the reverse
inequality.
¢ b h
jf+ [f= jf. (3.2.10)
From equation (3.2.9) and (3.2.10). we will obtain
b & h
[r=lr+ro

Discussion:  The particular above theorem has an important interpretation for
nonnegative functions. If we split the interval over which we are integrating into two
parts, the value of the integral over the whole will be the sum of the two integral over
the subintervals. This amounts to dividing the region whose area must be found into
two separate parts and observing that the total area is the sum of the areas of the

separate portions.

Theorem 3.2.10: If / e R[a,b].
1.  f € R[c,d]for every subinterval [c.d|c [a,b].

ii. f?eR[a.b].

n.  f-ge Rla.b]whenever g € R[a.b].

iv. If f,ge R[a,b].then f/g e R[a.b]. where g is bounded away from zero.

v. If f and g are bounded functions having the same discontinuities on [a, b], then
f € Rla,b]if and only if g € R|a,b]

vi. Let ge R[la.b] and assume that m < g(x) < A/ for all xela,b] . If f s
continuous on [m, M], then the composite function defined by A(x) = f[g(x)]is

Riemann integrable on [a, 5].

Lo
(% ]



Proof: i) Let & > 0be given. Then there exists a partition P of [a, b] such that
U(f.P)a.b]-L(f.P)a.b]<&.
Let P*= PuU{c.d}. The P* is a refinement of [a, b] then
U(f,P¥)a.b]<U(f.P)a.b]
and )
L(f,P¥)[a.b)= L(f,P)[u,b].
Now. let Q = P *[c¢,d]). Then Q is obtained by restricting P*to [¢, d]. Hence we have
the inequality,
U(f,0)e,d]-L(f.O)Nc.d]<U(f.P¥)a.b] - L( f.P*)[u.b]. (3.2.11)
Because of the lett hand side has fewer terms which are all non-negative than the right
hand side. Since f € R[a,b]. we get
UCf, P¥)a,b] = L(f, P*)[a,b] < €. (3.2.12)
Using equation (3.2.12) in equation (3.2.11), we get that
U(f,O)e.d]l-L(f,0)e.d)<e.

Therefore, we get f € R[c,d].

i) Let £ > 0 be given and than there exists a partition P of [a, b] such that

U(f.P)a.b]-L(f.P)la.b]<¢.

Since. we know that M, (f*)=M (| £ ) and m,(f)=m,( f ).

n

UG P~ L2 P) = Y IM, () = m ()] [x,.x,]

i=]

- i[‘Mf(é f |)2 - m:(l f |)2][x,_,,x;]

= UM+ m (OHM f D =m() f D3]
1=1

<2AY M (A D= m (| Dxa-x )
1=

Where Aisan upper bound of fin [a. b]. Therefore, we have.

U(fE.PY=L(f2.P)<2AU( f1.PY-L( £, P)]

U(f1.P) =L fI.P) < 2=
(71LP)=L( f ¥

v

U3
=



Hence,
U P)= 1, P)<sg

and therefore , 7* € R[a.b].

i1) Firstly, we shall show that the square of a Riemann integrable function is also

Riemann integrable. such that
M(fH=M(fD* and m (f*)=m( f])°

Thus,

U .P) = L(f2PY= X [M.(f*) = m, (f)x,.x,]
f=l

=S UM m O S D= ml f D3 E %)
<3AU( f1.P) - 10 £1. P)
We have shown that the square of any Riemann integrable function is Riemann
integrable, now, f'and g are Riemann inetgarable,
1) g(x) and f(x)+g(x)
are all Riemann integrable, thus,
(S0 +g(x)) = f(x)* = g(x)* =2/ (x)g(x)

is Riemann integrable, and so f{x)g(x) is integrable.

1v) Since g(x) # 0 for any x € [a,b], applying f - L € R[a,b], provided

(el

1 2 -
— € R[a.b] whenever g € R[a,b]under the given condition. Hence we shall prove

thatle R[a,b]. whenever g € R[a,b]and g is bounded away from zero. We have,
g

| g(x)|>i forevery x €[a,b]. Let P be a partition on [a. b). «, B €[x,_,,x,].

L e - 1
g g | gazd) |7

g(f)-gla).

Then,

l

Ajl [.1] —im, (!J < {[“{' (g) ~ M1, (g)] ,
g, i

this implies that
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U(i,P ] . 1[‘ . PJ < . Py - Lig. P
b4 1

Since g € R[a,b]. given ¢ > 0, there exists a partition P such that
Ug.Py-L(g.P)<i’s.

Then we will get

33 The Fundamental Theorem of Integral Calculus

At this stage in our development, we have proven several theorems for testing
whether a given function is integrable on an interval [« h]. But this fact does not give
us a method for finding the value of the integral. It would be convenient to have a
procedure to compute easily the actual value of an integral. Thus the fundamental
Theorem of calculus describes an important connection between integrals and
derivatives as well as to compute the integrals. The connection between the Riemann

integral and antiderivative are often called “indefinite” and **definite™.

We have already seen that the definite integral of a positive function can be
interpreted as the area under the graph of the function. The definite integral is given

by the a sum which is
h n-l
'[f(x)dx = Iimz_f'(x, )Ax .
K JreewD =0

When the function /'was positive. we could interpret each term f(x,)Ax as the area of
n-1

a very thin rectangle. This means when we perform the sum Z f(x,)Ax, we are
1=0

actually computing the additive inverse of the area of all the rectangles and so the area

A is given by
A=- Jf(x)dx or 'ff(x)(iv =—4.

The definite integral measures the additive inverse of the area between the graph and

the x-axis. Now, when the function f'has some regions where it is positive and others



where it is negative, we may compute the definite integral by integrating over the
regions where the function is positive and add that to the integral over the region

where the function is negative. This leads to the observation that
[flode=a,-4,.
d

Where 4, is the area bounded by the region where the ‘function 1s positive and 4, is
the area bounded by the region where the function is negative. So in this most general
case. the definite integral can still be thought of as measuring area, but it does by
measuring some area as negative and others as positive. With this interpretation, we

can convey the following Fundamental Theorem of Calculus.

Theorem 3.3.1 (The First Fundamental Theorem of Calculus): Suppose that

f € R[a,b] is continuous on the closed bounded interval [¢, b] and if

Fx)= [f(nd.

then,
F(x) = fix)

forall a <x<b.

Proof: If f(x) is continuous function on F'(x) = I f(t)dt , then
F'(x) = fix).

For any fixed x € [a,b], choose /# # 0 and x + /4 € [a,b]. Then, we have the following

X+

F(x+h)=F(x)= [ft)di- ]'f(r)dr

x40

= -]’f(r)dr + [fuyde- ]f( £ydr

X+h

= [rwar

Notice that as # becomes small, the definite integral can be thought of as the area of a

very thin strip. In particular, the area of this trip may be approximated by the area of a



rectangle. This means that

x+h

Fx+h)=F(x)= [f(dr = f(x)

or

F(x+h) - F(x)
h

= f(Y)h .t

Now as /4 becomes very small. the approximation becomes even better and so we have

F'(x) = lim F(x+h)-F(x)
h—0 ]l

=/(h.

Thus verifying the relationship we have been expect. This completes the argument

which justifies the relationship

Theorem 3.3.2 (Second Fundamental Theorem of Calculus): Let f € R[a.b] be
integrable and F € R[a,b] is an any antiderivative of f on (a. b) which is continuous
function such that

F'(x)= f(x), Vxela.b].
Then

h
Jf =F(b)-F(a). Vxela.b].

Proof: Suppose fis integrable on [¢, h] and F'is an antiderivative of fon (a, b)
which is continuous on [¢, b]. In particular. F'(x) = f(x) tor all x in (a. b). Let

P ={x,.x,,...x,} beapartition of [a. b]. and let Ax, =x, —x,_,. i=12,...n.Now,
F(b)-F(a)=F(x,) - F(xy)

=F(x,)+ (F(x, )= F(x,,)) +(F(x, ;)= F(x, ;) + ...+ (F(x)) = F(x,)) = F(x,)
=(F(x,) = (F(x,. ) - F(x, N+ (F(x, )~ F(x,)) + oo + (F () — F(x,))

= Z”:(F(x,)—F(.\]_,)). (3.3.1)

By the Mean Value Theorem, for every i =1.2,...n. there exists a point ¢ in the

interval [x, —x,_,.] such that

F(—Yl ) = ['.1()”1_4 )

Xy =Xy

F'(c) = (3.3.2)

(98]
o



Since F'(c) = f'(c)and [x, —x_,,] = Ax,, it follows that

F(x))-F(x,_) = f(c)Ax,.

]

(3.3.3)

Hence. putting equation (3.3.3) into equation (3.3.1),
F(b)-F(a)=)_ f(c)Ax, .
=1

Thus, F(b)-F(a) is equal to the value of a Riemann sum using the partition P, and so
must lie between the upper and lower sums for P. That is, we have shown that for any
partition P,

L(f.P)SF(b)-F(a)<U(f.P).

But, since f is integrable, there is only one number hat has this property, which is

b
_[ f(x)dx. Then we have shown that

]-f=F(b)—F(a)-D

Example 3.3.3: We shall compute the area under the straight line y= f{x) = x

I
between x = () and x= [. That is _[xdx.

0

Solution: An antiderivative of the function f{x)= x is given by the function
)
» (x):)%. (Can check with the F’(x) = f(x).) Now applying the Fundamental

Theorem of Calculus, we have

[x=F@®)-F@©0)=

0

o | —

This is in fact the same results as we found those the laborites process of summing.

3
Example 3.3.4: Since F(¢t) = %tz is an antiderivative of f(¢) = Ji , we have,

k 22,16 16
Vtdt =212 |}=—-0=—.
0_[ d=30h=3 3
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Example 3.3.5: Find the value of _[xz .

0

Solution: We shall proceed numerically.. First. we partition [0. 2] into » equal

"
subdivisions of length — each. to obtain the partition
n

P, - {)219 A

" *

non n n

%,_/

For this partition.

2i V(2
ml’)—z(n’-j (;J

z.iij
n =1
_ 8 n(n+)(2n+1)

=— :
n 6

Where the last inequality is obtained by applying the formula for the sum of squares
up to n. the sequence {{/(P,)} is monotonically decreasing and bounded below. By
taking the limit as » tends to infinity. we get

mf{U(P,)} =limU(P) = L g

=
b]

On the other hand. evaluating L(P,)leads to

52

=1

) iz' 8 n(n-D(n)N2n-1)
n) n ‘% i 6 ‘
On taking the limits of L(P,)as 1 tends to infinity we get quantity g =supL(P,).and

now,

5

% =inf{U(P,)}> | x~ and

c.__}ul

W | o0

Gl 2 2
Hence, J. =—= I , and we conclude that I
0 0 0
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Discussion: In the calculation above. we used a rather special collection of
partitions where each subdivision was of equal length. We would have computed the

supremum of L(' P) and the infimum of U(f P) for possible partitions, P, of [0, 2],

. . . . 8
and identified both these quantities with the number 3 Instead, we use the

subcollection {P,} consisting of all partition that generated subintervals of equal

2 =
length, d = —. For these partitions. we were able to show that
n
. — e — 8
inf{l/(P,)} = sup{(L(F,)} = = .
3
With the Definition 4.1.5, is sufficient to guarantee that x° is not only integrable, but

to establish value of the integral on [0. 2].

While it is the case of f'is integrable on [a. h], using equally space for calculation will
yield the value of the integral. They exhibit the two important features:

a) The partitions used consist of (# +/) equally spaced points.

b) The components of the upper and lower sums associated with suprema and imfima
over subintervals have been replaced by values obtained by evaluating the function

at the endpoints of the subintervals.

In conclusion it is clear that a computation that involves equal length subintervals and

evaluation of the function only at the end points of these subintervals.

Discussion:  As can be seen from these examples, the Fundamental Theorem of
Integral Calculus provides us with powerful tool for evaluating definite integrals
exactly. However, to utilize the theorem we must first find an antiderivative for the
function we are integrating. But it does not tell us which functions have

antiderivatives.
34 Improper Integral
All functions that are Riemann integrable have bounded domains and bounded

ranges. That functions have bounded function arises from the fact that each of the

integral definitions required the function to be defined on a close interval. That

41



function have bounded ranges arose as a prerequisite in the case of a Riemann
integrable due to the fact that we require the supremum and infimum of the function to
exist as a finite number on each subinterval. In Riemann integration, the integrals are

defined for bounded functions over bounded closed interval. The object is to extend

the definitions of the Riemann integral J‘f( x)dx to integrals over unbounded intervals

for function which are unbounded at a point in the finite interval of definition.

In calculus, an improper integral is the limit of a definite integral as an
endpoints of the interval of integration approaches either a specified real number or
coor —co, or in some cases, as both endpoints approach limits. Specifically, an

improper integral is a limit of the form

C—»(

h il
lim j F(x)dx . lim J'f(x)d\',
or of the form
lim jf(x)dx , lim If(x)dx .
c-h” b * .

In which one takes a limit in one or the other (or sometimes both) endpoints. Improper
integrals may also occur at an interior point of the domain of integration, or at
multiple such points. It often necessary to use improper integral in order to compute a
value for integrals which may not exist in the conventional sense because of a

singularity in the function, or an infinite endpoint ot the domain of integration.

——

a & X

L 4

Figure 10: Improper integral



Definition 3.4.1: Let / be a real-valued function on [a,®) that is Riemann

integrable on [a. c] for every ¢ > a. The improper Riemann integral of f on [a, b).

denoted by J' f . is defined to be

hff = lim ff |

provided the limit exists, then the improper integral is said to be convergent.

Otherwise, the improper integral is said to be divergent.

Definition 3.4.2: Let 7'be a real-valued function on (a. b] such that f € R[a,b]for
b
every ¢ € (a,b). The improper Riemann integral of f on (a, b], denoted by J.f, is
defined to be
b h
[ =1im [7

provided the limit exists. then the improper integral is said to be convergent.

Otherwise, the improper is said to be divergent.

Definition 3.4.3 (Convergence ot the integral): An improper integral converges if

the limit defining it exists. Thus for example one says that the improper integral

!

lim J/’(x)dx

1=

exists and is equal to L if the integrals under the limit exist for all sufficiently large #,
and the value of the limit is equal to L. It is also possible for an improper integral to
diverge to infinity. In that case. one may assign the value of wor — to the integral.

For instance

h—>>

kel
lim [—dx.
IS

However. other improper integrals may simply diverge in no particular direction,

such as
I
lim Ix sin xdx

h—ro

£
)



which does not exist. even as an extended real number. A limitation of the technique
of improper integration is that the limit must be taken with respect to one endpoint at a

time. Thus, for instance, an improper integral of the form
tl‘ J(x)dx
is defined by taking two separate limits. that is
“j‘f(.\‘)cbr = alin\ 'lnrl ]‘f(x)dx

provided the double limit is finite. By the properties of the integral. this can also be

written as a pair of distinct improper integrals of the first kind,

¢ b

lim jxdx + lim jxdx
Ay =i hy g
a <

where ¢ is any convenient point at which to start the integration.

[t is sometimes possible to define improper integrals where both endpoints are infinite.

Definition 3.4.4: [f a function fis the Riemann integrable for every s>a, and we

let F= I[ f(x)|dx, and if F is bounded above on[a.c0), then lim F(s) exists and

hence j f(x)dx is said to be converge absolutely.

a

@

1 . A . .
Theorem 3.4.5: The |—dx for x >« >0 converges for p>] and diverges for
;X'
p<l
. ki, , .
Proof: The function f(x)= — s continuous for any x >a and
b

el 1 (] 1
)= Ix”(ix 1 ~ plis? - a”! )

Hence,
.y -1
llm}:(s)z W A R
e a” (1~ p)

If p>0and
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lim F(s)=ow if p</ Whenp =/,

Y00

we get

& d" “
F(s)= I; = log ;

a

which tends to «as s — . Hence. the given integral converges for p >I and

diverges for p =/ and forp </. O

Theorem 3.4.6: Let F(s)= j f(x)dx and G(s)= Jg(.\')dx are both convergent,

a

o

and thelim F(s) and limG(s) exist. Then J[f(x’)ig(x)]dx is convergent and

i) £ gnr =42 B = [£(x)edx + [ex)ax.

Proof: Let
limF(s)=.4 and limG(s)=B.
Now,
JUr ) = 2oy = lim [ () g(x))ax

= g_ig){ j[ Fx) g(x}]dx} = lim j f(x)dx £ lim jg(x)dx

=4+0B.
This proved that '[[f( x)* g(x)ldx is convergent and

o

j[f(x) tg(x)dx=4+xB= J‘f‘(.\')(]{X"F J.g(x)dx. o

Theorem 3.4.7 (Comparison Test): If 0< f(x) < g(x) for all xe[a,) and if f(x)

and g(x) are the Riemann integrable on [a,0) . then



i If J g(x)dx converges, then J'f(x)ch converges.

i. If If(’x)dx diverges. then Jg(x)dx diverges.

Proof: For each s>>(0, we have 0< J f(x)< Ig;\') which give

0< F(x)<G(x).

The function F(s) and G(s) are monotonic increasing function of s. hence, if G(5)

tends to a limit as s — o . then F(s) will not tend to a limit. Hence if Jg(x)dx

a

converges. then I_f (x)dx converges.

a

i1) Prove, if F(s) is unbounded so that (;(s) is also unbounded. Hence if J J(x)adx

diverges, then jg(x)dr is divergent. O

Example 3.4.8: The function  f(x) = 2xsin LI cos L] [ is locally integrable and
P X

derivative of

F(x)=x" sinl
£

-
on |—.,0 |. Hence,
T

" 0 L P I
JAf (x)dx = x? Sin-—| =57 SIn— + -~
5 x|z s T

and

b - . hal . = 4
If (x)dx = lim(s"‘ sml + 41 j =%
3 A-307 R 7 &

45
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according to Definition 3.4.1. However, this is not an improper integral, even though
/(0) is not defined and cannot be defined so as to make f continuous at 0. If we define

o . : -2 .
f(0) arbitrarily, then f is bounded on the closed interval |:—,0] and continuous
7

. : 4 :
except at 0. Therefore I J(x)dx exists and equals —- as a proper integral.
2 7

x

Example 3.4.9: We have some example for the first kind of the first kind of the

Definition 3.4.1 are

. |
1. ]J‘F dx
- 1
11. lj‘fdx

Solution:

o0

i .[_2 dx is convergent. then F(s)= J.—dex =]- l so that
§ %

. s
S0 Ky

1 . Tl
Hence, |—-dx is convergent and J—zcbc:l
| X | X

o

1 -
—dx is divergent. Now,

-

Fi()= j—f__dx = 2(J5 -\

A

S /—

So. lim F(s) = lim 2(\/3_‘—1) 1s infinite. Hence. I— «««««««««« -x 1s divergent.
R 102 l ;\’l -\’
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Example 3.4.10: (Theorem 4.4.3)

Tl
[
Jet +1
Solution: For every x in [0.%), we have — i < L(
S

Let f{x)= rl 1 and g(x)=- 1 . While, we obtained that Je"‘dx is convergent and
e’ + e ¢

Ie“dx=1. Hence, by comparison test, _[g(x)a’x is convergent, then I J(x)dx is also
0

a a

convergent.
3.5 Riemann-Stieltjes Integral

The Riemann-Stieltjes integral is a generalization of Riemann integral. It is
defined that the Riemann-Stieltjes integral of a real-valued function f'of a real variable

with respect to a real function g is denoted by
h
[rogtx).

and defined to be the limit, as the mesh of the partition P of the interval [a. b]

approaches zero, of the approximating sum

D fle)glx,.) - g(x,)).

Where c.is in the i-th subinterval [ x,.x,,,]. The two function fand g are respectively

called the integrand and the integrator. Most commonly, g will be non-decreasing, but
this is not required. In order that is Riemann-Stieltjes integral exists it is necessary that
f and g do not share any points of discontinuity. An alternative, and slightly more
general. definition of the Riemann-Stieltjes integral uses the same approximating
sums. And it takes the limits as more and more division points are inserted into the
partition of [, b]. With this definition, an integral can exist when f'and g share points
of discontinuity, as long as they are not discontinuous {rom the same side at the same

point.
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If g is differentiable to everywhere, then the integral may still be different from

the Riemann integral.
If(x)g’(x)z;lx 3

They will be same if the derivative is unbounded and continuous. However, when the
functions are continuous and increasing, g. such as Can£0r function may have jump
discontinuity and have derivative zero almost everywhere. For the form of integration
by parts of the Riemann-Stieltjes integral. the existence of the integral on the left

implies the existence of the integral on the right.

[£(0dg(x) = 1) - g(b) - F gt~ [g)dr (x).

Definition 3.5.1 (Definition of the Riemann-Stieltjes Integral): Let o be a
monotone increasing function on [¢, b], and let / be a bounded real-valued function on
[a, b]. For each partition P = {x,.x,,.....,x, } of [a. b]. set
Aa, = a(x;))—al(x, ). i=12...,n.
Since g is monotone increasing, Aa > 0foralli, let
m, =inf{f(N:x_, <1<x} and M, =supf{f(t):x_ <t<x}.
As for the Riemann integral. the upper Riemann-Stieltjes sum of /* over the partition P

with respect to « is, denoted U(f, P, « ), is defined by

U(f.P.a) = ZM, (x(x,)—a(x,_,)).-

i=1
Similarly. the lower Riemann-Stieltjes sum of / with respect to a and the partition P,

denoted L(f. P. « ), is defined by
L(f P =Y m(ar(x) ~a(x,,).
i=1

Since m, < M, and Aa, 20. we have L(f,P.a) <U(f,P,«) for any bounded

function f'and any partition P. Furthermore, if i < f(x) < M forall x € [a,b]. then
mlab)-al(a)| S L(f.P.a)<U(f.P.a) £ M[a(b)—a(a))

for all partition P of [a, b). Let P be any partition of [« b]. Since A, < M for all

iand Aq, 20,
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> MAa, <Y MAa, =MD Aa, = Mla(b)-ala)].
=} i=] P |

Thus, U(f,P,a) < M[a(b)—a(a)]. The other inequality follows similarly. In the

above we have used the fact that

1=l

=a(x,)—a(x,) =a(b)—alq).

In analogy with the Riemann integral, the upper and lower Riemann-Stieltjes integrals

A h
of f/ with respect to a over [a. b], denoted I fda and '[ fda respectively, are

defined by

fda =int{U(f.P.a): Pisa partition[a,b]} .

h
j fda =sup{l(f.P.a): Pisa partition [«,b]}.
The {U(f.P,a): P is a partition [a,b]} is bounded below, and thus the upper integral

of f'with respect to « exists as a real number. Similarly, the lower sums are bounded

above, and thus the supremum defining the lower integral is also finite.

Definition 3.5.2: Let f be a bounded rcal-valued function on [« b]. and « a

monotone increasing function on [«, b]. If

/]‘ fda = !J‘ tda

v

then /' is said to be Riemann-Stieltjes integrable or intrgrable with respect to @ on

[a, b]. The common value is denoted by
f fda  or j F(xX)da(x)

and is called as Riemann-Stieltjes integral of / with respect to « .



Theorem 3.5.3: Let / be a bounded real-valued function on [¢, b], and o a

monotone increasing function on [a, b]. Then

K

h /
_[ fda < J Sfde .

a

Proof: With the proof of Definition 3.1.5, if P* is a refinement of the partition
P, then
L(f.P,a)S L(f.P*,a) SU(f,P*a)<U(f,P,a).
Thus if P, L are any two partition ot [a. b].
L(f,P.a)SL(f,PULa)SU(f.PUL,a)sU(f,P,a).
Therefore L(f,P.a) <U(f,P.a) for any two partition P, L. Hence,

h
[ fda =sup L(f,P,a) <U(f, P,)
a ¢

for any partition L. o

Theorem 3.5.4: Let @ be a monotone increasing on [a, b]. A bounded real-

valued function fis Riemann-stieltjes integrable with respect to « on [a, b] if and only

if for every £ > 0. there exists a partition P of [«, b] such that
U(f,P,a)-L(f.P.a)<¢.

Furthermore, if P is a partition of [a. h] for which the above holds. then the inequality

also holds for all refinement of P.

Proof:

The proven are similarly with the theorem 3.1.7. &y

Theorem 3.5.5: Let / be a real-valued function on [¢, ] and @ a monotone
increasing function on [¢, b].

1) Iff is continuous on [a, b], then f is integrable with respect to a on [a, b].

i) If/ is monotone on [«. h]. and « is continuous on [a, h], then f is integrable with

respect to @ on [¢, b].



Proof: 1) Let & > 0. choose — > 0 such that

a(b)-a(a)

b e
[a() a(a)] (b)—a(a)

Since f'is continuous on [a. 5], thus exists ¢ > 0 such that

e 3.5.1
10 f e mmfs (3.5.1)

for all x, v € [a,b] with (x—y)< . Choosc a partition P of [a, b] such that Ax, <&
forall i =1,2,...,n. Then by inequality (3.5.1).

£

MAa, —-mAa, < —_—
a(h)—ala)

forall i=12....,n.

Therefore,

U(f,P,a)- L(f,P.a)=) (M, -m,)Aaq,

1=1

<;_ - n U S |
ma’(l))—a(a)l_] a; = a(b) (a() a(a))<8

Thus then f is intgerable with respect to « on [« b].

for any positive integer i, choose a partition P = {x,.x,......,X, } of [@, b] such that
1 _
Aa, =a(x)-alx,_ ) =—[ad)-a(a)].
n

Since g is continuous. assume fis monotone increasing on [a. b]. Then M, = f(x,) and

m, = f(x,_,) . Therefore.

il

U(f.P.a)-L(f.P.a)=) [F(x)- 1(x_)]Ae,
s bh) — )
- B @S - i)

:_[a(b)—a(a)][ by mta)]

n '

Given ¢ >0, choose n € N such that
[ (D) — a(a)]

n

(f(B) = fla))<e.

For this » and corresponding partition P. {/(f.P.«)— L(f.P,a) <& . which proves

the results. o



Definition 3.5.6: For a given monotone increasing function & on [a. b]. R(a)
denoted the set of bounded real-valued function f on [« b] that are Riemann-Stieltjes

integrable with respect to « .

Theorem 3.5.7 (Mean Value Theorem): Let f'be a continuous real-valued function

on [a, b]. Then there exists ¢ € [a.h]such that

J.‘fa’(x = f(O)|w(D) - a(a)].

Proof: Let m and M denote the minimum and maximum of f on [e, b]

respectively. Then by Theorem 3.6.4(d).
mla(b) ~a(@)] < [ fide <Mla(b) - ala)].

If a(b)—c(a)=0, then any ¢ €[a,b] will work. If a(b)—~«a(a)= 0. then by the

intermediate value theorem there exists ¢ € [«,b] such that

] b

flc)= —— | flat . O
Ak a(b)—a(a) (;'“f
Theorem 3.5.8 (Integration by Parts): Suppose « and [ are monotone

increasing function ob [a, b] and that each is Stieltjes integrable with respect to the

other. Then

b b
j fda = p(b)a(b) - Sla)ya(a) - j adf .

Proof: Since « and are both increasing, for any partition
) g y P

P ={x,,x,,....,x,}on [a. b]. we have

U(B,Poa)+ L(@. P.B) = > B )a(x,) — et ) +3 a6 )(Bx,) - Bx,)
= Y (BONa(x) = Blx)ar(x, ) + (s, B -a(x, ) B, )

= Z(ﬂ(-r, ya(x,)—a(x, ) B(x,)) = BD)a(b)~ fla)al(a). (3.5.2)

i=l

i
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From the integrability of @ and f with respect to each other for every ¢ >0, there

exists a partition P such that

h . h
L(a,P.p)— Iaa‘,@ <% and |[U(S,P,a)- .[,Bda

”
S

2
which together with equation (3.5.2) implies that,

<¢&.

b b
[adp+ [pda - pb)aih) + playa(a)

Since this holds for every & > 0. the left side must be 0. o

Example 3.5.9: Discuss the Riemann-Stieltjes Integral integrability of the

function, f(x)=x, x e€[0.2]. with respect to the function. « :[0.2] - R defined by

_J0,  ifxe[0]].
a(x) L ifxe(l2].

Solution : Given € > 0, choose a partition. P, of [(. 2] such that || P ||< &. Notice
that if Aa, = a(x,)—a(x,_,)=0, then [1,6) c [x,,x,_,]. for some o >1. It follows

that there is exactly one i such that Ac, # 0. For this 7 . we have
U(f.P.a)=L([.P,a)|= ZM,Aa, —Zm,Aa,
ts=l =1

=M Aa, —-mA«,

=(M,-m)1-0)=x,, —x,
< Ple.
Since & was arbitrary, the existence of the integrals allows. and its value is easily seen

to be 1.

Discussion:  This example illustrates one of the useful properties of Stieltjes
integrals, with their difference “weights’ to different values of £ In this case. the only
points of f that is important for purposes of computing this integral is the value at 1.
This is due to the fact that « is constant on any interval which does not include 1,

while at 1, « undergoes rapid change.



Example 3.5.10: Discuss the Riemann-Stieltjes integral integrabiliy of the

function f :[0,2] > R defined by

~_[o, if xe[0,1],
“(-‘)‘{1, if x e (1,2].

With respect to the function a(x) = f(x).

Solution: For any  partition  P*  there exists a  refinement
P={0=x,<x <...<x, =2}of [0. 2], for which there exists a subinterval [x,,x_, ]
that contains the point 1 as well as a point greater than 1. As in the example above, we
have Aa, =1 while Aa, =0 for i # j. whence

U(f,Pa)y=Y MAa, = MAa, =1(1-0) =1.

i=|

On the other hand.

L(f,P.a)=) mAa, =mAa, =0(0-1)=0.
1=l

1 1 !
Consequently, .[ fda =1 and I fda =0 . Hence, J fda does not exist.

0 0 0

Discussion:  a does not have to be continuous. Aca; does not have to shrink to 0 as
| Pll— 0. Now Theorem 4.6.3(a) uses the fact that | £(x,)— f(x,_,)| must shrink to 0

as the norm of P goes to 0 to avoid the problems with discontinuities in « . Theorem
4.6.3(b) uses the continuity of «, which forces A¢, to shrink to 0 as the norm of P

goes to 0 to avoid the difficulties with discontinuous and the points of discontinuity

match in such a way that the situation cannot be retrieved.

N
(9]



CHAPTER 4

THE LEBESGUE INTEGRAL

4.1 Measure Theory

Rather than partitioning the domain of the function, as in the Riemann integral,
Lebesgue choose to partition the range. Thus. for each interval partition, rather than
asking the value of the function between the end points of the interval in the domain,
the Lebesgue asked how much of the domain is mapped by the function to some value

between two end points in the range.

| —

range // range [
JA\

aN 7\ ~_1
L N
| v
domain > domain "

Figurel 1: Two ways to counts rectangles- partitioning the range as

opposed to partitioning the domain of a function.

Measure theory was used to determining how much of the domain is sent to a
particular portion of a partition of the range. The notion of measure is based on

capturing the essence of a simple intuitive idea and extending it by a mathematical



procedure to more general setting. The intuitive idea in our case is the length of 7,

denoted by m(4), which is the difterence between its end-points.

Definition 4.1.1: If J is an interval, we define the measure of ./, denoted m(J), to

be the length of J. Thus if Jis (a, b), (a. b]. [a, b), or [a, b]: a.be R, then
m(J)y=h-a.

Definition 4.1.2: If A4 is an open subset of R, then there exists a finite or

countable collection {/,} of pairwise disjoint open intervals such that
4=,

Recall. the family {/,} is pairwise disjoint if and only if [, /1, =© whenever

n¥*m.

Definition 4.1.3: If A is an open subset of R with 4 = U[n where {/,}1s a finite

or countable collection of pairwise disjoint open intervals. we define the measure of 4,

denoted m(A4). by

m(A4) = Zm(]” ).

Remark:
(a) For the empty set O. we set in(.4)=0.
(b) The sum defining m(A4) may be either finite of infinite. If any of the intervals are of

infinite length, then m(A4) = «. On the other hand. if
A:gg,
where the /, are pairwise disjoint bounded open intervals, we may still have
m(A)= im(ln )=90,

due to the divergence of the series to <. Since nmi(/,) =0 for all n, the sequence of

partial sums is monotone increasing and thus either convergence to a real number or

divergence to o,
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Theorem 4.1.4: If 4 and B are open subsets of R with A c B, then

m(4d)<m(B).
Proof: Suppose 4 =)/, and B=U., where {/,}, and {J,,}, are finite or

countable collection of pairwise disjoints open intervals. Since 4 < B. each interval

I, < J, forsome m, let

= . o~ !
N _{n‘jn ‘““Jillj'

m

Since the collection {J

[}
mSm

is pairwise disjoint, so is the collection{~ , }, and

Ad=UL = JLIL,.

m neN,,

Therefore,
m(A) = Z zm(]").
Then,
Z m(l,)<m(J,). o
neN,,
Remark: If 4 is an open subset of («. b), u,be R, then .m(A)<b—-a. Thus

every bounded open set has finite measure.

Theorem 4.1.5: If 4 is an open subset of R, then

m(A) = lin) m(A,)

where for each ne N. 4, = 4N (-n.n).

Proof: For each s, A, is open. with

A, <4, 6 c 4
for all n e N. By Theorem 4.1.4. the sequence {m(.4,)} is monotone increasing with
m(A4,) < m(A) tor all n. Theretore,

limm(A) < m(A). (4.1.1)

If 4 is bounded. then there exists », € N such that

N
o



AN(=n.n)= 4
for all n2n,. Hence m(A,) < m(A) for all » 2n, and thus equality holds in equation

(4.1.1). Suppose that 4 is an unbounded open subset of R with
A=U/,

where {/, } is a finite or countable collection of pairwisé disjoint open intervals. If
m({,)=o for some n, either /, =R or [, is an interval of the form (—0,a,) or
(a,,») for some a, € R. Suppose I, =(a,.»). Choose n, € N such that n; 2 a, |.
Then for all n>n,,
I, N(-n,n)=(a,.n),
and thus,
00 = ’111_21 m(l, N(=n.n)) < 11{1{} m(A,))<m(A).

Therefore holds the equation (4.1.1). Suppose m(/,) <o for all n. Since A4 is
unbounded, the collection {/,} must be infinite. If the collection were finite, then

since each interval has finite length, each intervals is bounded, and as a consequence 4

must also be bounded. Let @ € R with a < ni(.4). Since

Zm(ln) =md)>a,

n=|

there exists a positive integral N such that

ﬁ:m(_ln)>a.

n=1

.'\‘r
LetB= U I, . Then B is a bounded open set. and thus by the above,

n=1

m(B) = limm(B N (~n,n)).

n—e

Since m(B) > « . there exists n 2 n,, such that
m(B\(-n,n)) >« forall n=n,.
But B(\(-n.n) c A, forall ne N . Hence by Theorem 4.1.4,
m(B\(=n,n)) <m(A,),
and as a consequence

m(A4,)>a forall n>n,.



If m(A)=co. then since & <m(.4) was arbitrary, we have m(4,) > » as n > . If

m(A) <o, then give £ >0. take & =m(A4) -&. By the above. there exists n, € N

such that
m(A)—& <m(A,) <m(4) torall n>n,.

Therefore.

m(.4) = lim m(d,)). o
Theorem 4.1.6: If {4,}, is a finite or countable collection of open subsets of R,
then

m(U A J 2. md,).
Proof: If {1,}" is a finite collection of bounded open intervals. then

m(U I”J @’"Uﬂ

n=l|

The collection {/,} is not assumed to be pairwise disjoint. O

Definition 4.1.7: If £ is a subset of R. the characteristic function of £, denoted g ,
is the function defined by

1, xek.
PREERE S

Suppose 7 is a bounded and open interval. Choose a,h € R such that/ < |a,b]. Since

. 1s continuous on [a. b] except at the two endpoints of /, y, € R[a,h] with

If A is an open subset of [a, b] with
11 = U J”
n=t
where {/J,} are pairwise disjoint open intervals, then
i

X =) 1, (x),

n=t
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and thus,

" m b

h
m(A) =Y m(J,) =[x, (ds = [, ().

n=l1 n=l 4

To defined the measure of a compact of subset of R, let K is a subset compact of R and
A is any bounded and open set containing K. then

A=KU(A\K).

The fact of 4\K is also open and bounded, and thus has finite measure, the measure of

K will be defined.

Definition 4.1.8: Let K be a compact subsct of R. the measure of K, denoted
m(K). is defined by
m(K)=m(A4)-m(4\K),

where A is any bounded and open subset of R containing K.

Theorem 4.1.9: [f K is compact, then m(K) is well defined.
Proof: Suppose .4 and B are any two bounded open sets containing K, then we
have,

m(A)+m(B\K)Y=m(AU (B K))+m(4N(B\K))
=m(AUB)+m((ANB)\K).

In the above. we have use the fact that

AUB\K)=4UB

and
ANB\K)=(4NB)\K.
Similarly,
m(A\K)+m(B)=m(AU B)+m((4NB)\K).
Therefore,

m(A)+m(B\K)=m(B)+m(A\K).
Since all the terms are finite,
m(A)—m(A\K)=ni(B)-m(B\K).

Thus the notation of m(K) is independent of the choice of A; m(K) is well-defined. o
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Theorem 4.1.10: If A is an open subset of R and a,b € R. then

m(AN[a,b]) +m(A'Na,b])=b-a.

Proof: When 4'=R\A={xe R:x¢ 4}.1If 4 is open, the A" is closed and
thus 4()[a,b] is a compact subset of [a, b]. Suppose B >[a,b] is open. Let
K= A'N[a.b]. Then since B> K,
m(K)=m(B)-m(B\K).
But.
B\ K = BN (ANa,b))'=(BNA)U(BN[a.b]') > BN A.
Therefore, m(B(\ A) <m(B\ K). Since 4(\[a,b) < A B,
m(BN[a.b])+m(K) <m(AN B)+m(B)-m(B\ K) <m(B).
Given ¢ >0, take B=(a—¢,b+¢). Then
m(AN[a,b)) + m(ANa.b])) <b-a+2¢.
Since & > 0,is arbitrary, this proves that

m(AN[a.b))+m(AN[a,b]))<b-a.

To prove the reverse inequality, let/, =[a+¢&,b—¢]. where 0 <& < %( b—a). Then

m(AN[a.b) + m(A[a,b])) = m(A(a,b)) + m(ANI,) .
Since (a, b) is an open set containing AN/, ,
m(ANL,)=b-a-m((a,b)\(AN1,)).
But,
m((a,b)\ (ANI,)) = m((a.b)N AU ((a,b)N 1',))
=m(((a,b)N A)U (a,a-¢g)+(b-¢.b)).
By Theorem 4.1.6,

<m(AN(a.b))+2¢ .
Therefore,
m(AN[a,b]) + m(AN[a.b])=b-a-2¢ .0
Definition 4.1.11 (Inner and Outer Measure): Let £ be a subset of R. The

Lebesgue outer measure of £. denoted m* (). is defined by

m*(E)y=int{m(A): A is open with E c A}.



The Lebesgue inner measure of £, denoted m*(E), is defined by
m,(E) =sup{m(K): K is compact with K < E}.
m(E)y=m*(E)-m*(E\K).

Theorem 4.1.12: The measure m* and m. both exhibit monotonicity. That is.
given A B c R. and for any subsets of R, 0 < n, (E) <m*(E) it follows that

m*(E)<m*(E,) and m.(E)<m.(E,).

Proof: [f K is compact and 4 is open with K < E < 4, then
0<m(K)y<m(A).
If K is fixed, then m(K) < m(A) for all open sets 4 containing £. Taking the infimum

over all such A gives

0<m(K)ysm*(E). o

Example 4.1.13 (Definition 4.1.3):

For all n=1,2, .... ,set I, :(n—%,n+qln). Then

I, =(1—l,1+l),12 =(2—l,2+l} etc.
2 2 4 4

Since n+27" <(n+1)=2""" for all ne N . the collection {I }* is pairwise

nfn

disjoint. Let 4 = UI,, .

n=|

Then.

= Simr) = Fam S
n=1 n=0

n=l

The set 4 is an example of unbounded open set with finite measure.

Example 4.1.14 (Theorem 4.1.12)
a) If E is any contable subset of R, then m,(E)=m*(E)=0. Suppose E={x,}._,.

, . € & ”
Let £ >0 be arbitrary. For each n, let 7, :(x” — 55X +,)—n], and set A :UI" .

n'n

n=|

Then 4 is open with £ c 4. by Theorem 4.1.6,
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m(A)Sim(I,,)z £ :qu AAAAAAAAA =P |
n=|

n
1] 2 n=0 —

Theretore, m*(E)<2¢ . Since &>0 was arbitrary, m*(E)=0 . As a

consequence, we also have m*(E)=0.

b) If 7 is any bounded interval. then m, (/) =m*(I) = m(l), suppose /=(a, b) with

a,be R . Since [ is open, m*(I)<m(l)=b-a . On the other hand, if

“ <

& €. ‘
0<&<b-a.then {a + ?‘b —;] 1s a compact subset of /, and as a consequence,

b—a—g=m[a+£.b—£]sm.(]).
b 9

Therefore, b—a—e<m,(I)<m*(I[)<b—u . Since £ >0 was arbitrary. equality
holds. A similar argument proves that if / is any closed and bounded interval, then
m.(I)=m*(I)=m([l). As a consequence of Theorem 4.1.12, the result holds for any

bounded intervals /.

4.2 Measurable Sets and Measurable Functions

Definition 4.2.1: A set FEc R is Lebesgue measurable, if m(E)=m.(E) .
measure F is denoted simply by m(F) and is given by
m(E)= m (£)=m.(E).

A straight forward extension of this detinition was applies to unbounded sets.

Definition 4.2.2: The measure for an unbounded set E is defined as

m(E)=limm(E([-n,n)).

n—m

Remark: If E is unbounded and E(1/ is measurable for every closed and
bounded interval /, then the sequence {m(L (1[-n.n])},_, is non- decreasing, and as a

consequence m(E) = limm(f [\[-n.n]) exists.
n-—-»o0
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Theorem 4.2.3: The outer measure, m , is countably additive on the set of all
measurable subset of R. If { .4, |7 =1.2,...} is a set of measurable subsets of R, then
=1

m (O A)= Z m.(A,).
n=| =

Theorem 4.2.4: Every set E of outer measure zero is measurable with m(E) =0

Proof: Suppose E < R with m*(£) = 0. Then for any closed and bounded
interval [,

m*(ENDH<I*(E)=0.
Thus m,(EI)=m*(E()1)=0 and hence E()/ is measurable for every closed and

bounded interval /. Since m(E(\[-n,n]) =0 foreveryne N, m(E) = 0. o

Definition 4.2.5 (Measurable function): Let £ be a bounded measurable subset of

R and f:F—> R a function. Then f is said to be measurable on £ if

{xe E| f(x)>r} is measurable for every real number r. Since
7' (r.») = {x: f(x)>r}./ is measurable if and only if f'((r.c))is a measurable

set for every r € R.

Theorem 4.2.6: [f each function in sequence {f,} is measurable on a set 4 and

if fis the pointwise limit function of {f,} . then f'is measurable very well.

Proof: Let x € £ and » € R such that f{xj>>r. Let p be a natural number such

that f(x)>» +—. Then. by definition of limit. there exists a natural number N such
P

that for all n > N,

Thus,

f(x)y=lim £ (x)>r+ = >r,
H—>n }_’)

This implies that



o

{-\‘EElf(x)>r}=OO U {erlf;,(x)>r+l}
p=l p

N=ln=N+l

Since this set is measurable and » was arbitrary, then f is measurable. O

Definition 4.2.7: The simple function is the development of the Lebesgue
integral and will make use of a pedestrian class of measurable class. A simple function

f :A— R is a measurable function which takes on tinitely many values.

Theorem 4.2.8: A function f:A4 — R is measurable if and only if it is the

pointwise limit of a sequence of a simple function.

Proof: Suppose r is a simple function on [a, b] with ranger ={¢,,...,«,} .
where «a, # a, wherever i # j. For each i=1, ... ,n, set
A={xelabl:r®) =a}=r"(a}.
Since r is measurable, each A, is a measurable set, and
) =Y a7, (0.
i=l

Furthermore, since «, =, if i# j, the set A4 , i=1,....n, are pairwise disjoint with

U, 4 =[a.b], r(x)= Za,,g,,l (x) is called the canonical representation of . If all

=]

the set A, are intervals, then r is a step function on [a. b]. O

4.3 Integrating Bounded Measurable Function
To construct the integrating bounded measurable functions. we will first

constructing the Riemann integral except partitioning the range rather than the domain

of the function.

Let /: E — R be a bounded measurable function on measurable subset £ of

R. Let a=inf{f(x)|xe€ E} and b >sup{f(x)|xe€ E}, u is arbitrary insofar as it is
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greater than the least upper bound of fon E. We will detine the Lebesgue integral of f

over an interval E as the limit of Lebesgue sums.

Definition 4.3.1: The Lebesgue sum of f:E — R with respect to a partition

P={y,,....y,} of the interval [/ u] is given as
L(f,P)=2 ym({xeE|y S f(x)<p}),

where y~ €[y, ,,v,]foralli=1,...nand f is a bounded measurable function over a
bounded measurable set £ — R. This is the new ways to count rectangles, the v, is

the height of the rectangle and the m({xe E'| y,_, £ f(x) < y,} ) serves as the base of

the rectangle. The detfinition of the actual Lebesgue integral is virtually identical to

that of the Riemann integral.

Definition 4.3.2: A bonded measurable function f:E —> R is Lebesgue
integrable on E if there is a number L € R such that given & > 0 there exists a & > 0

such that | L(P, f)— L|<& whenever || P||<d . where L is known as the Lebesgue

integral of fon E and is denoted by Iﬁim.
E

Theorem 4.3.3: A bounded measurable function f is Lebesgue integrable on a

bounded measurable set £ if and only if, given £ > 0, there exists simple functions

_7and £ such that

f<r<f.
and
[f-]f<e
E E
Proof: If /is a bounded measurable function on a bounded measurable set E,

then /'is a measurable on E. Furthermore,

j_fdm = sup j fdm| £ issimpleand f < f}.
E E
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— inf{ ﬁdm ] 7 is simple and —f— > f} a

Theorem 4.3.4 (Bounded Convergence Theorem): Suppose {f,} is a sequence of

real-valued measurable functions on [« b] for which there exists a positive constant Af

such that | f, (x)|< M forall ne N,andall x e|a.b].If
lim f, (x) = f(x).

then is integrable on [, 5] and

J.fiim = lim J £, dm.

n=>.
[a.h] [a.b]

Proof: Since f, — / ./ is measurable and thus Lebesgue integrable. Let
E ={xela.b]: f,(x) does not convergence to f{x)}.

The function g, g,, ne€ N is defined on [a. h].

8 (m;{é’”(x), vela,b)\E,

xe k.

and

g(x)= {(f)(x) ‘;*Z[Eb] \E,

Since m(E) = 0. g, = f, and g = f. Therefore,

n

}] g,dm = J f,dmn

and

h

h
J g dm= I 1 dm.

o

Furthermore g,(x) = g(x) forall x €[a,b]. Let £ >0 be given. For me N, set

E, ={xela,b]:|g(x)-g, (x)|<¢ forall nzmj.

m

Then E, c E, < --- with UE,,, =[a.b]. Therefore.

ni=1
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Hence, E', = [a. b\ E,, . We have limm(£',)=0 . Choose me N such that

m(E',)<e.Then | g(x)—g, (x)|<e forall 2>m andall x € E,. Therefore,

b b

I fdm — I f,dm| =

a

< [lg-g,ldm

la.b]

Igdm - } g, dm

a

= [lg-g,ldm+ flg—én | dm
3 F

“mt

<em(E,)+2Mm(E,) < glb—a+2M].

"

Since £ >0 was arbitrary, we have

an‘E I Jf,dm = Iﬂlm .0

[a,b) [a.b]

Theorem 4.3.5 (Fatou’s lemma):  If {f,} is a sequence of nonnegative measurable

functions on a measurable set .4. and lim £, (x) = f(x) on 4. then
>0

_[fdm < lim J.f dm .
A n—> 1
Proof: Suppose that the set.4 bounded. For each k € N, let
h,(x) =min{f, (x).k} and h(x) =min{ f(x),k}.

Then for each k € N, the sequence {4, | converges to # on 4. since | 4,(x)|< k for all

x € A, by the bounded convergence theorem.

Jmm f.kidm < lim Jmm [, kydm < lim If dm .

A ﬂ—}(OA n-= mo
Since the above holds for each k € N,

Ifdm = 11m jmm{f Jeydm < lim _[f dm .

n-rw
A A4

If 4 is unbounded, then by the above for each k€ N,

_[/dm\llm j/ a’m<11m_[f dm. o

ANk k| H-»on ANk k] =30

Remark: Fotou’s lemma is often to used to prove that the limit function f of a

convergence sequence of nonnegative Lebesgue integrals functions is Lebesgue
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integrable. For if li_mj‘f;,a’m <w and if f, —» fon A with f, >0 for all n, then by the

A

Fatou's lemma. Jf;,a’m < co. Thus fis integrable on 4.
A

Theorem 4.3.6 (Lebesgue’s Dominated Convergence Theorem): Let {f,} be a

sequence of measurable functions defined on a measurable set 4 such that

lim £, (x) = f(x) exists for all xe 4. Suppose there exists a nonnegative integrable

functions g on 4 such that | £, (x)|< g(x) forall x 4. Then f is integrable on 4 and

J/dm =lim Jf;,dm i

n—rw

Proof: Since g is integrable on A. the functions f and f, also has finite
Lebesgue integrals. By redefining all the /. we N, on a set of measure zero is
necessary. without loss of generality assume that | f, (x)[< g(x) for all xe 4 .

Consider the sequence {g + f,} >0 on the sct 4. by the Fotou's lemma.

j(f+ 2)dm = lim I(f + g)dm £ lim J(f + g)dm

H~ »oo /I—)AJ

= J'gdm + lim J. f.dm.

N=>
Therefore,

ffdm <lim jf dm .

n—. 4

Similarly. by applying Fatou’s lemma to the sequence {g + f,} to obtain

J'(f £)dm < lim j(g S )dm= jgdm+11mj —f,dm.

H—% "—)‘X.‘

But

lim j—f dm =~ hm jf dm .
A
Therefore,

j Jdm 2 }'T_IEI j,/;,dm . O
A
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Remark: The hypothesis that there exists an integrable function g satisfying

| f, |< g for all x €[a.b]is required in the proof in order to subtract Jgdm in the

above inequalities. This is not possible if J‘gdm = Bg,

Theorem 4.3.7: Let fand f,, ne N, be Riemann integrable functions on [a, b]

with lim f, (x) = f(x) for all x € [a,b]. Suppose there exists a positive constant Af

such that | £, (x)|< M forall x €[a.b] and all ne N . Then

h A
lim j fy ()t = [ fxyx.
n—w

Discussion:  Recalls that { f, } is uniformly convergent, if given & > 0. there exists a
natural number N such that | f, — f,(x)|<& whenever n >N, for all xe[a,b]. The
hypotheses placed on {7,} in order for the l.ebesgue Dominated Convergence
Theorem to hold are much less stringent than requiring { f,} converging uniformly.

Thus, we can expect that the classes of Lebesgue integrable functions are better limits

properties than the class of the Riemann integrable functions.
4.4 Properties of the Lebesgue Integral
The properties of the Lebesgue integral illustrate some of the techniques of

Lebesgue integration.

Theorem 4.4.1: Let / and g be bounded measurable functions on a bounded

measurable set £.
I.  Monotonicity: If £ <g,then '[ﬁfc/m < Ig dm .
; ;

II.  Linearity:

and
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II.

IV.

VI

4.5

J‘cfdm = chdm JorceR.

'3

For any number I, weR such that /< f<u , it follows that

l.m(4) =< J.fdm <u.m(E).

|demls J-|f|dm.

If 4 and B are disjoint bounded measurable sets and f: 4AUB—> Ris a

bounded measurable function, then

I fdm= J.fa’m+ J‘fdm.
A B

AUB
Countable Additivity: it £ = F where the E are pairwise disjoint bounded
measurable sets, then
I n=lp,

The General Lebesgue Integral

Suppose 4 is a bounded measurable subset of R, and that f'is a nonnegative

measurable function defined on 4. For each e N,

f, () =min{f(x).n} = f(x). f(x)<n n, f(x)>n.

Then {f,} is a sequence of nonnegative bounded measurable functions defined on A4,

with lim f, (x) = f(x) for all x € 4. Furthermore, if m > n, then

LX) S () f(x)

for all x € A4 then the sequence

n=l

is monotone increasing, and it converges either to the real number or diverges to .



Definition 4.5.1:

1) Let f be a nonnegative function defined on a bounded measurable subset 4 of
R. The Lebesgue integral of f over A, denoted J.‘/dm , is defined by
A

Ji/dm = lim _[f,,dm =sup Imin {f,n}dm .
A A f

4 .

1) If A is an unbounded measurable of R and f is a nonnegative measurable

function on A4, the Lebesgue integral of fover 4. denoted I fdm , is defined by
A4

.[,fdm =lim _[ fdm .

]

A AN =n 1)

The sequence of { J‘ﬁlm l is also monotone increasing, and thus converges either
A -n,n] [ NN

to a nonnegative real number or diverges tooc:.

Definition 4.5.2: A nonnegative measurable function f defined on a measurable-

subset A of R is said to be Lebesgue integrable on A if Ifdm <oo.
A

Theorem 4.5.3: Let /. g be nonnegative measurable functions defined on a

measurable set 4. Then

1) I( f+g)ydm= I fdm + Jgdm and ch/dm 26 j fdm forall ¢ > 0.
4 A | N 4

9

i) If A4, A, are disjoint measurable subsets of . then,

'[ Sfdm = J fdm + I fdm .

AUA

i) If /< g on 4. then J_fdm < Jgdm with equality if = g on 4.
! A

4

Proof: 1) Suppose the set 4 is bounded, let ~=f+g. Since
min{ f(x) + g(x),n} <min{f(x),n} + min{g(x).n} < min{f(x) + g(x),2n}.

We have h, < f +g,<h,, forall ne N.As a consequence,

Sn —

J h,dm < _[ I dm+ J.g”dm < I h,,dm .
A A A A

Suppose f,g are integrable on 4. Then,



lm;('[ f,dm+ .[g,,dmj = lunf J,dm+1lim jg,,dm = J Sfdm + jgdm

H—>7 H—>)

Therefore, since

lim | h,dm=lim I h,,dm = I(f+g)dm

gre 4 n—o

A

It one or the both {J' A/;,dm},{f g,,dm} diverges to oo, then so theirs sum. We
4
obtain I(f + g)dm = . If 4 is unbounded, then by the above foreachne N,
A

J (f +&)dm = Iﬁlm+fgdm a)
AN(=n,n]

Example 4.5.4: Let the function f(x)= I/JT detined on (0. 1). Then for each
nenN,

0<x<l/n?,
1/n* <x<I.

Jo(x) = min{ f(x), n} = {I/«/_

,'”2 ’.)
Therefore, Jf dm = fndx + I —\}:(Lx 1 + (2 - -:) =2- L] . As a consequence,
0

e n) H

1 . .
Ifdm—lnm Jf,,dnz—llln(7——j=2. This answers corresponds =0 improper

n=->w n=->w0
o,n h

Riemann integral of the function f. This will always be the case for nonnegative

functions for which the improper Riemann integral exists.

Example 4.5.5: Let the function f(x)= 1/«/7 defined on (0, 1). Then for each ne N,

0<x<l/n.

J.(x) =min{f(x),n} = {1/\/—

1/n* <x<1.
1/n? 1 1 1 9 1
Therefore, Jf,,dm— Ind\+ I —dx=—+|2-—|=2-—. As a consequence,
0 1/nt’ X L 4 L

I fdm = lim Jf”dm = llm(2

j=2. This answers corresponds r=0 improper
(0.0 (0,1)

:I-—

Riemann integral of the function f. This will always be the case for nonnegative

functions for which the improper Riemann integral exists.
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CHAPTER S

DISCUSSIONS, CONCLUSIONS AND SUGGESTIONS

5.1 Differentiation between the Riemann and Lebesgue Integral

The Riemann integral are defined as follows:
e subdivide the domain of the function (usually a closed. bounded interval) into
finitely many subintervals (the partition)
e construct a simple function that has a constant value on each of the
subintervals of the partition (the Upper and Lower sums)
o take the limit of these simple functions as to add more and more points to the

partition

If the limit exists, it is called the Riemann integral and the function is called Riemann

integrable. Now i will take. in a manner of speaking, the "opposite" approach:

e subdivide the range of the function into finitely many pieces

e construct a simple function by taking a function whose values are those finitely
many numbers

o take the limit of these simple functions as to add more and more points in the

range of the original function



If the limit exists, it is called the Lebesgue integral and the function is called Lebesgue
integrable. To define this new concept, we use several steps:
1. Define the Lebesgue Integral for "simple functions".
2. Define the Lebesgue integral for bounded functions over sets of finite measure.
3. Extend the Lebesgue integral to positive functions (that are not necessarily
bounded).

4. Define the general Lebesgue integral.
5.2 Relation between the Riemann Integral and The Lebesgue Integral

The Riemann integral and the Lebesgue have much more relation with each
other. We will show that the basic properties of the Riemann integral of a real-value

function and to relate it to the Lebesgue integral.

The Riemann integral of a bounded real-valued function f :[a,h] &> R, and f

can take positive or negative value, but it is essential that /* be a bounded function and

the domain of f be a compact interval. We have the Riemann integrable which is

b -b h
j = J‘f , where rather than J. f(x)dx, so that this integral is not confuse with the

= a

Lebesgue integral. this notation will reserve for the Lebesgue integral.

For every continuous function f € R[a,b]is Riemann integrable. Lebesgue

integrable is also at the function f € R[a,b]. Both Riemann and Lebesgue integral are

h b -b
agree J'f (x)dx = '[f= j f on every f € R[a.b]. The Riemann integrable makes

a
sense only for function f'that is define on a bounded and compact interval. Continuous

functions are Riemann integrable and their Riemann and Lebesgue integrals coincide.
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Let f be a nonnegative function in R[a,). If f is an improperly Riemann

integrable then f'belongs to the Lebesgue space L[a.«0). then
Jf(x)dx =lim,_, I,(f)-

For the this situation, a continuous function f"defined on [@.), and f(x)2>0.x 2 a.
Riemann integral can be form at every T > a, then f is restricts to a nonnegative
function in C[a,T]. These integrals are numbers that depends on 7 and denote them
by 1, (f). I,(f) is an increasing function on 7 since fis nonnegative. f'is said to be
improperly integrable if the partial integral 7, (f)remain bounded. Improper integral
of f'is define by

I1(f)=lim,__I,(f).

The second type of the improper integral is defined on bounded interval like

(a,b],[a.b).or (a,b).but which is unbounded in their domain. Such as

f(x) =——l—, 0<x<l.

Jx

Consider a continuous negative function f defined on an interval (a. b] but it
unbounded near the left endpoint. That is, for every positive numbers0 <e< b —a , the

function is Riemann integrable where the restriction of f to the compact subinterval
[a+ &, b]. We denote the Riemann integral by /°(f). When & decrease to a, the
integrals [°(f) increase. f is said to be improperly Riemann integrable if

I (f) remain bounded and then it belongs to Lebesgue integral space L(a. b] and

[fenydx=lim__ . I°(f) .

(a.h)

Let f be a bounded real-value function detined on a compact interval [a, b].
Then fis Riemann integrable if the set D = { x € [a,b] : fis not continuous at x} of all
discontinuity points of fis a set of Lebesgue measure zero. Every bounded Riemann
integrable function defines on [a, b] is Lebesgue integral. and the two integral are the

same.
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5.3 Comparison to The Riemann Integral

The definition of the [.ebesgue integral is very similar to that of the Riemann
integral, except that in the Lebesgue theory we use measurable partitions rather than

point partition. If P ={x,.x,,....x,} is a partition on [a, b], then

P* = {[xg,x 11Ut x x T
is a measurable partition of [«. b]. Furthermore. if fis a bounded real-valued function
on [a, b], then.
L(f,PYSL,(f,P*) and Uf.PYz2U,(f.P*).

Therefore, the lower Riemann integral of f'satisties

I S =sup{L(f.P): Pis a partition of [« b]}

<sup{L,(f.L):Lis a measurable partition of [«, b]}.

Similarly. for the upper Riemann integral of /* we have

h
j f=int{l/,(f.L): Lis a measurable of [a. b]}.

If / is a Riemann integrable on [a. b]. then the upper and lower Riemann integrals of

are equal, and thus
h h
[FCxydx <sup L (f. L) <inf U, (f L)< [ f(x)edx
a L - a

where the supremum and infimum are taken over all measurable functions L of [a. b].
With the Theorem 4.3.6, the Lebesgue’s Dominated Convergence Theorem and
Theorem 4.3.7, the Convergence of the Riemann integrals are stated explicitly related
the Riemann and Lebesgue integrals was :

If /' is Riemann integrable on [a, b], then fis [.ebesgue integrable on [«, b], and

]‘f( )dx = J fdm.
a fa.h)

We have seen that the converse theorem is not true. Thus, not only does the class of
Lebesgue integrable functions have better limits properties, but it is also larger than
the class Riemann integrable functions. There is an example to re-examine of the

function below.
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Example : Consider the sequence of functions {f,} over the interval £=[0. 1].

~An-1"

7(x) :_[2", if 5_];735’{5 >

0,  ortherwise.
The limits function of this sequence is simply /= 0. In this example, each function in
the sequence is Rieamann integrable. as in the limit function. However, the limit of the
sequence of Riemann integral is not equal to the Riemann integral of the limit of the

sequence. That is.
! i
lim [£,(x)=120= [limf,(x)dx .
0 0 e
Then, it is also the case that

1
lim Iﬁ,dmzl¢()r Jl’imf"(x)dx.

n—ow
10 101}

Thus, we have to show solve the function f, by measurable function. There are three

cases to consider, corresponding to three possible choices for the real value number r.

They are

a) r>2":Theset {xe E

£, (x)>r}isanull set and therefore measurable.

b) 0<r<2":The set {xeE

f,(x)>r} is the closed interval [%,%i' and is

measurable.
c) r>0: The set {xe £| f,(x)>r} is the entire interval £ and is therefore

measurable.

Thus, each f, is a measurable function. This example could show that although

the Lebesgue integral is superior to the Riemann integral insofar as the size of the
class of integrable functions and the limit properties of these functions. there are still

functions which defy Lebesgue integration.
Discusssion: Definition of the Riemann integration is simple and clearly motivated

as a measure of area. it is well suited to formulating physical laws and performing

computations and it articulates the relationship between integration and differentiation
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through the fundamental theorem of calculus. The Riemann integrable functions is not
wide enough, with consider the following observation:
1. In example The function defined on R by

~_ L o xeQ.
f('\)-{(l xeQf,

is not Riemann integrable on any bounded interval, though the function is almost

constant.

2. The set of Riemann integrable functions R[¢, b] is not closed under pointwise
convergence. It is not even closed under monotonic pointwise convergence, let

(f,, =ne€ N) be the sequence of functions defined on [0, 1] by

eI, x=p/lgeOn[0,1],g<n,
14(x) _{() ortherwise.

where p and g have no common factors, (f, € R(0,1) because f, is continuous except

at a finite number of points. Clearly, 7, (x) increases with » and tends to the functions

f(x) as n — .

The main difference between the Riemann Integral and the Lebesgue Integral
is that the Riemann Integral is using over a partitioning on an interval and the

Lebesgue Integral is over a partition of a set. [f -{ = R, than the measurable function

of 4 is a finite collection {A, } of pairwise disjoint measurable subsets of A such that

e

If the partition P={x,.x,,.....x,} of the bounded interval [«, b], then set 4, =[x,,x,]

and 4, =[x, ,,x,| for n=2. then we can ecasily see that the collection {4, } is a

measurable functions of [a, »] and does not necd as an intervals.
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Even through both the Riemann Integral and Lebesgue Integrals are related to

supremums and infimums of sums over partitions. In facts if f'is bounded real-valued
function on [a, b] and {4,} is a measurable partitions of [a. b] then similar to the

Riemann upper and lower sums. The l.ebesgues sums are defined as
Lf, A=) mA(4,) and  U(f, A=) MA(4),
i=1 i=|
where

m, =int{f(¢):te 4} and M, =sup{f(t):ted}.

Lebesgue can apply to some more spaces in where the Riemann cannot, it is
because the Lebesgue Integaral uses a more concept of measure to address the length
of the domain partition. This allows more flexibility for integration therefore the
construction of the integral can be done with respects to sets and measure on those sets.

The Riemann and Lebesgue can be distinguishing such as following:

b
i. I f(1)dt is use when the Riemann integral of f'does exists.

a

b
ii. J-_f'(t)d/”t(t) is apply for the L.ebesgue Integral.

Contrast to the Riemann condition. Lebesgue integrable does not have to bounded
and continuous anywhere while the weakness of the Riemann Integral can only be
applied to bounded real-valued functions. l.cbesgue Integral also performs better in
the limits functions while the Riemann Integral is difticult to describe in the limit

processes.
5.4 Conclusions

From the results showing in chapter 4, although the Riemann integration are
complicated enough since being defined as a limit of upper and lower sums, Riemann

integrable functions are almost continuous functions, and it can only be taken over or

unions of intervals so it cannot be used to integrate the abstracts of sets. And thus,
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Riemann faces difficulties to extend to other abstracts sets, for example. from N to R.
So the most appropriate integral to take place is to solve the weakness of the Riemann.
Riemann integral and l.ebesgue integral are much more similar. But the Lebesgue
integral is more flexible and useful than the Riemann integral. The fruits of this theory
are now available in a sequence of powerful results which include the monotone
convergence theorem. Fatou's lemma. the dominated convergence theorem and the
bounded convergence theorem. They all point the superior behavior of the Lebesgue
Integral compare to the Riemann integral insofar as the size of the class of integrable

functions and the limits properties.

5.5 Suggestions

This is a very interesting topic under the real analysis course, it is good idea
that to teach both the Riemann integral and I .e¢besgue integral in undergraduate level
to consider in the syllabus of the mathematics course. It can be used as a resource for
self-study by those students who want to deeper understanding of integration. Anyone
intending to continue in graduate study or further master in pure or applied

mathematics can consider of these topic.
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